
INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS

XU YUAN

Abstract. These lecture notes correspond to the contents of the Undergrad-
uate course MATH 4220-PDE taught at the Chinese University of Hong Kong
in Spring 2023. Partial differential equation (PDE) is a fundamental tool
for modeling natural phenomena. The main goal of these notes is to present
four classes of linear PDEs (Transport, Laplace, Heat, Wave), to introduce
their fundamental properties, and to introduce the mathematical tools that
are necessary for their study. Prerequisites for these lecture notes are the
bases of Multivariable Calculus (Integration by parts, divergence theorem,
Green’s Identity, Stokes Formula, Gauss Formula, etc.), of linear algebra, and
of mathematical analysis.

1. Introduction

1.1. What is a PDE. A partial differential equation (PDE) is an equation in-
volving an unknown function of two or more variables and certain of its partial
derivatives.

Definition 1.1. Let F be a given function such that

F : Rnk

× Rnk−1

× · · · × Rn × R× Ω → R.

An expression of the form
F
(
Dku(x), Dk−1u(x), . . . , u(x), x

)
= 0 for all x ∈ Ω (1.1)

is called a k-th order partial differential equation, where

Dku(x) = {∂αx u(x) : |α| = k} ∈ Rnk

,

and u : Ω → R is unknown.

We solve the PDE if we find all u : Ω → R verifying (1.1), possibly only among
those functions satisfying certain auxiliary boundary conditions on some part Λ of
∂Ω.

Definition 1.2. An operator L is called R-linear if it satisfy
L(u+ v) = Lu+ Lv L(cu) = cLu

for any functions u and v, and any constant c ∈ R.

Definition 1.3. The PDE (1.1) is called linear if it has the form
Lu(x) = f(x) on Ω

for given R-linear operator L and given function f . The linear PDE is homogeneous
if f ≡ 0 and inhomogeneous if f 6= 0.

Example 1.4. (i) Consider the PDE ∂tu+∂
3
xu+u∂xu = 0 where u(t, x) : R×R →

R. The PDE is not linear equation since the operator Lu = ∂tu + ∂3xu + u∂xu is
not a linear operator. By direct computation, we check

L(u+ v) = Lu+ Lv + u∂xv + v∂xu⇒ L(u+ v) 6= Lu+ Lv.
1
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(ii) Consider the PDE ∂2t u− ∂2xu+ u3 = 0 where u(t, x) : R×R → R. The PDE is
not linear equation since the operator Lu = ∂2t u−∂2xu+u3 is not a linear operator.
By direct computation, we check

L(u+ v) = Lu+ Lv + 3u2v + 3vu2 ⇒ L(u+ v) 6= Lu+ Lv.
(iii) Consider the PDE ∂2t u − ∂2xu + ∂xu + u = 0 where u(t, x) : R × R → R. The
PDE is linear equation since the operator Lu = ∂2t u − ∂2xu + ∂xu + u is a linear
operator. By direct computation, we check

L(u+ v) =
(
∂2t u− ∂2xu+ ∂xu+ u

)
+
(
∂2t v − ∂2xv + ∂xv + v

)
= Lu+ Lv.

It is worth mentioning here that the advantages of linearity for the equation Lu = 0
are twofold:

(i) If {uj}Nj=1 are all solutions, then any linear combination
N∑
j=1

cjuj(x) : Ω → R,

is also a solution of the equation.
(ii) If u is a homogeneous solution and v is an inhomogeneous solution, then

u+ v is also an inhomogeneous solution.

Example 1.5. (i) Consider the PDE ∂2xu(x, y) = 0 where u(x, y) : R2 → R. We
integrate once to get

∂xu(x1, y) = ∂xu(x2, y) for all x1, x2 ∈ R ⇒ ∂xu(x, y) = f(y) on R2.

We integrate again to get
u(x, y) = f(y)x+ g(y) where g(y) = u(0, y).

This is the solution formula. Note that there are two arbitrary functions (f(y) and
g(y)) in the formula.
(ii) Consider the PDE ∂2xu(x, y) + u(x, y) = 0 where u(x, y) : R2 → R. Fix y ∈ R,
it is really an second ODE with variable x. Solving the ODE, we find

u(x, y) = f(y) sinx+ g(y) cosx on R2.

(iii) Consider the PDE ∂xyu(x, y) = 0 where u(x, y) : R2 → R. First, we integrate
in x regarding y as fixed,

∂yy(x1, y) = ∂yu(x2, y) for all x1, x2 ∈ R ⇒ ∂yu(x, y) = f(y).

Then we integrate in y to get

u(x, y) = u(x, 0) =

∫ y

0

f(s)ds = G(x) + F (y) on R2.

1.2. Initial and boundary conditions. In general, PDEs have lots of solutions,
as we saw in Example 1.5. Recall that, even ordinary differential equations (without
any imposing condition) have infinitely many solutions. The solutions to dynamical
ordinary differential equations are singled out by the imposition of initial conditions,
resulting in an initial value problem. On the other hand, equations modeling equi-
librium phenomena require boundary conditions to specify their solutions uniquely,
resulting in a boundary value problem. For PDE, we consider the two imposing
conditions that similar as ODE case.

Example 1.6. (i) Consider the wave equation with an initial condition at t = 0:{
∂2t u(t, x) = ∆u(t, x), (t, x) ∈ [0,∞)× Rn,

u(0, x) = u0(x), ∂tu(0, x) = u1(x),

where u0(x) is the initial position and u1(x) is the initial velocity.
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(ii) Consider the heat equation with an initial condition at t = 0:
∂tu(t, x) = ∆u(t, x) with u(0, x) = u0(x)

where u0(x) is given function on Rn.

We mention here that the three most important kinds of boundary conditions are:
(i) Dirichlet condition: the solution u is specified on boundary ∂Ω.
(ii) Robin condition: the function ∂u

∂n + au is specified on boundary ∂Ω.
(iii) Neumann condition: the normal derivative ∂u

∂n is specified on boundary ∂Ω.

Example 1.7. (i) Consider the Dirichlet problem in a bounded domain:
∆u(x) = f(x) in Ω ⊂ Rn,

u(x) = g(x) on ∂Ω ⊂ Rn,

for f ∈ C(Ω) and g ∈ C(∂Ω).
(ii) Consider the Neumann condition problem in a bounded domain:

∆u(x) = f(x) in Ω ⊂ Rn,

∂u

∂n
(x) = g(x) on ∂Ω ⊂ Rn.

(iii) Consider the mixed initial-boundary problem:
∂tu(t, x) = ∂2x(t, x) for (t, x) ∈ [0,∞)× [0, L],

u(0, x) = ϕ(x) for x ∈ [0, L],

u(t, 0) = g(t) for t ∈ [0,∞),

u(t, L) = h(t) for t ∈ [0,∞),

where ϕ(x), h(t) and g(t) are given functions.

1.3. Well-posed problems. The mathematical term well-posed problem stems
from a definition given by 20th-century French mathematician Jacques Hadamard.
He stated that mathematical models of physical phenomena should have the fol-
lowing three properties that:

(i) Existence: The problem in fact has a solution;
(ii) Uniqueness: There is at most one solution;
(iii) Stability: Solution depends continuously on the data given in the problem.

Note that, we should carefully define what is a solution to PDE. Indeed, there are
at least three types of solution: classical solution, weak solution, strong solution.
In this lecture, we focus on the classical solutions for PDE.

Definition 1.8. A function u : Ω → R is called a classical solution to a k-th order
PDE if it satisfy this equation at every point of its definition and belong to the
function set Ck.

Example 1.9. (i) Consider the wave equation in the cylinder Ω:
∂2t u− ∂2xu = f(t, x) for (t, x) ∈ Ω,

(u, ∂tu)|t=0 = (ψ(x), ϕ(x)),

u(t, 0) = g(t), u(t, L) = h(t) for t ∈ [0,∞),

where Ω =
{
(t, x) ∈ R2 : 0 ≤ t <∞ and 0 ≤ x ≤ L

}
. The data for this problem

consist of five functions f(t, x), ψ(x), ϕ(x), g(t) and h(t). Existence and uniqueness
would mean that there is exactly one solution u(t, x) for arbitrary (differentiable)
functions f(t, x), ψ(x), ϕ(x), g(t) and h(t). Stability would mean that if any of
these five functions are perturbed, then u is also changed only slightly.



4 XU YUAN

(ii) Consider the Laplace equation on half plane with boundary condition
∆un(x, y) = 0 in Ω

un(x, 0) = 0,
∂un
∂y

(x, 0) = e−
√
n sinnx,

where Ω =
{
(x, y) ∈ R2 : −∞ < x <∞ and 0 < y <∞

}
. For any n ∈ N, we find

that the solution is

un(x, y) =
1

n
e−

√
n sinnx sinhny on Ω.

Note that ∂un

∂y (x, 0) → 0 as n → ∞. However for y ≥ 1, the solutions un(x, y) do
not tend to 0 as n→ ∞ which means that the stability is not true.

1.4. Types of second-order equations. Consider the second-order PDE
a11∂

2
xu+ 2a12∂xyu+ a22∂

2
yu+ a1∂xu+ a2∂yu+ a0u = 0, (1.2)

where a211 + a212 + a222 6= 0.

Theorem 1.10. By a linear transformation of the independent variables, the equa-
tion can be reduced to one of three forms, as follows.

(i) Elliptic case: If a212 < a11a22, then the equation (1.2) is reducible to
∂2xu+ ∂2yu+ c1∂xu+ c2∂yu+ c0u = 0,

where c0, c1, c2 ∈ R.
(ii) Parabolic case: If a212 = a11a22, then the equation (1.2) is reducible to

∂2xu+ c1∂xu+ c2∂yu+ c0u = 0,

where c0, c1, c2 ∈ R.
(iii) Hyperbolic case: If a212 > a11a22, then the equation (1.2) is reducible to

∂2xu− ∂2yu+ c1∂xu+ c2∂yu+ c0u = 0,

where c0, c1, c2 ∈ R.

Proof. Case 1: a211 + a222 = 0. In this case, without loss of generality, we assume
2a12 = 1. Therefore, the equation (1.2) is

∂xyu+ a1∂xu+ a2∂yu+ a0u = 0, (1.3)
where a1, a2, a0 ∈ R. Consider the linear change of variable{

x = ξ + η

y = ξ − η
and ũ(ξ, η) = u(x, y) = u(ξ + η, ξ − η).

By direct computation, we have
∂

∂ξ
=

∂

∂x

∂x

∂ξ
+

∂

∂y

∂y

∂ξ
=

∂

∂x
+

∂

∂y
,

∂

∂η
=

∂

∂x

∂x

∂η
+

∂

∂y

∂y

∂η
=

∂

∂x
− ∂

∂y
,

which implies

∂2ξ = ∂2x + ∂2y + 2∂xy, ∂2η = ∂2x + ∂2y − 2∂xy,
∂ξ + ∂η

2
= ∂x,

∂ξ − ∂η
2

= ∂y.

Based on the above identities and (1.3), we have
∂2ξ ũ(ξ, η)− ∂2η ũ(ξ, η) = 4 (∂xyu) (ξ + η, ξ − η)

= −2(a1 + a2)∂ξũ(ξ, η)− 2(a1 − a2)∂ηũ(ξ, η) + 4a0ũ(ξ, η),

which is Hyperbolic type equation.
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Case 2: a211 + a222 6= 0. In this case, without loss of generality, we assume a11 = 1.
We rewrite (1.2) as

(∂x + a12∂y)
2
u+ (a22 − a212)∂

2
yu+ a1(∂x + a12∂y)u+ (a2 − a1a12)∂yu+ a0u = 0.

When b =
∣∣a22 − a212

∣∣ 12 > 0. Consider the linear change of variable{
x = ξ

y = a12ξ + bη
and ũ(ξ, η) = u(x, y) = u(ξ, a12ξ + bη).

By direct computation, we have
∂

∂η
=

∂

∂x

∂x

∂η
+

∂

∂y

∂y

∂η
= b

∂

∂y
,

∂

∂ξ
=

∂

∂x

∂x

∂ξ
+

∂

∂y

∂y

∂ξ
=

∂

∂x
+ a12

∂

∂y
.

which implies

∂2ξ ũ+ sign(a22 − a212)∂
2
η ũ+ a1∂ξũ+ (a2 − a1a12)|a22 − a212|−

1
2 ∂ηũ+ a0ũ = 0.

Therefore, the type of equation (1.2) dependent on the sign of (a22 − a212).
When b =

∣∣a22 − a212
∣∣ 12 = 0 and a12 6= 0. Consider the linear change of variable{

x = ξ

y = a12ξ + η
and ũ(ξ, η) = u(x, y) = u(ξ, a12ξ + η).

By direct computation, we have
∂

∂η
=

∂

∂x

∂x

∂η
+

∂

∂y

∂y

∂η
=

∂

∂y
,

∂

∂ξ
=

∂

∂x

∂x

∂ξ
+

∂

∂y

∂y

∂ξ
=

∂

∂x
+ a12

∂

∂y
.

which implies
∂2ξ ũ+ a2∂ξũ+ (a2 − a1a12)∂ηũ+ a0ũ = 0.

Therefore, the equation (1.2) is Parabolic-type equation.
When b =

∣∣a22 − a212
∣∣ 12 = 0 and a12 = 0, we find that a22 = 0 which implies the

equation (1.2) is Parabolic type equation. □

The same argument can be done in any number of variables, using linear algebra.
Consider the second-order PDE

n∑
i,j=1

aij∂xixju+

n∑
i=1

bi∂xiu+ cu = 0. (1.4)

where aij , bi, c ∈ R. Since the mixed derivatives are equal, we may as well assume
that aij = aji for any i, j = 1, · · · , n. Denote A = (aij)i,j=1,··· ,n be a n × n
symmetric matrix. Using a theorem from linear algebra, we know that there exists
a matrix B with detB = 1 such that

BABT = diag(d1, d2, . . . , dn).
Recall that, the real numbers d1, d2, . . . , dn are the eigenvalues of A.

Definition 1.11. The second-order PDE (1.4) is called elliptic if all the eigenvalues
d1, . . . , dn are positive or are all negative. The second-order PDE (1.4) is called
hyperbolic if none of the d1, . . . , dn vanish and one of them has the opposite sign
from the (n−1) others. If none vanish, but at least two of them are positive and at
least two are negative, it is called ultrahyperbolic. If exactly one of the eigenvalues
is zero and all the others have the same sign, the PDE is called parabolic.
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2. Four important linear PDE

In this section, we will introduce four fundamental linear PDE. These are
the transport equation ∂tu+ b · ∇xu = f,

the Laplace’s equation −∆xu = f,

the 1D heat equation ∂tu− ∂2xu = f,

the 1D wave equation ∂2t u− ∂2xu = f.

(2.1)

In this section, the presentation is usually close to [1, Chapter 2] and [4, Chapter
2, Chapter 3, Chapter 6 and Chapter 7].

2.1. Transport equation. Let n ∈ {1, 2, 3}. Consider the following PDE

∂tu+ b · ∇u = 0 in (t, x) ∈ (0,∞)× Rn, (2.2)

where b = (b1, . . . , bn) ∈ Rn and u : (0,∞)× Rn → R is unknown.
We use the so called method of characteristics to find solution of (2.2). More
precisely, we consider a flow of u by fixing any point (t, x) ∈ (0,∞) × Rn and
defining

z(s) = u(t+ s, x+ sb), for all s ≥ −t.
By direct computation and using the equation (2.2),

d

ds
z(s) = (∂tu)(t+ s, x+ sb) + (b · ∇u)(t+ s, x+ sb) = 0.

Therefore, z(·) is a constant function of s, and consequently for each point (t, x), u
is constant on the line through (t, x) with the direction (1, b) ∈ R1+n. Hence if we
know the value of u at any point on each such line, we know its value everywhere
in (0,∞)× Rn.

2.1.1. Initial-value problem. Consider the initial-value problem{
∂tu+ b · ∇u = 0 for (t, x) ∈ (0,∞)× Rn,

u(0, x) = g(x) for all x ∈ Rn.
(2.3)

Here b ∈ Rn and g : Rn → R are known, and the problem is to compute u. Fix
(t, x) ∈ (0,∞) × Rn, the line through (t, x) with direction (1, b) is represented by
(t + s, x + bs) for s ∈ R. This line hits the plane Λ = {t = 0} × Rn when s = −t,
at the point (0, x− tb). Since u is constant on the line and u(0, x− tb) = g(x− tb),
we deduce

u(t, x) = g(x− tb) for all (t, x) ∈ [0,∞)× Rn. (2.4)
So, if (2.3) has a sufficiently regular solution u, it must certainly be given by (2.4).
And conversely, it is easy to check directly that if g is C1, then u defined by (2.4)
is indeed a solution of (2.3).

Example 2.1. (i) Consider the PDE{
∂tu− ∂xu = 0 for (t, x) ∈ (0,∞)× R,

u(0, x) = x3 for x ∈ R.

From (2.4), we have

u(t, x) = (x+ t)3 for (t, x) ∈ (0,∞)× R.

We check this solution by direct computation,

∂tu(t, x) = ∂xu(t, x) = 3(x+ t)2 ⇒ ∂tu(t, x)− ∂xu(t, x) = 0.
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(ii) Consider the PDE{
∂tu+ x∂xu = 0 for (t, x) ∈ (0,∞)× R,

u(0, x) = x3 for x ∈ R.
(2.5)

Consider the flow s 7→ (t(s), x(s)) for unknown t(s) and x(s). Denote
z(s) = u(t(s), x(s)) for s ∈ R.

By direct computation,
d

ds
z(s) =

dt

ds
(∂tu)(t(s), x(s)) +

dx

ds
(∂xu) (t(s), x(s)).

From (2.5), we know that the unknown function u is invariant on the flow (t(s), x(s))
which satisfy

dt

ds
= 1 and dx

ds
= x⇒ dx

dt
= x⇒ x = ±et+c.

Fix (t0, x0) ∈ [0,∞)× R, we know that ec = ±x0e−t0 which implies
for t = 0, we have x = x0e

−t0 ⇒ u(t, x) = x3e−3t on (t, x) ∈ (0,∞)× R.

2.1.2. Nonhomogeneous Problem. Consider the nonhomogeneous problem{
∂tu+ b · ∇u = f for (t, x) ∈ (0,∞)× Rn,

u(0, x) = g(x) for x ∈ Rn.
(2.6)

As before fix (t, x) ∈ (0,∞)× Rn and set z(s) = u(t+ s, x+ sb). Using (2.6),
d

ds
z(s) = (∂tu)(t+ s, x+ sb) + (b · ∇u)(t+ s, x+ sb) = f(t+ s, x+ sb).

Integrating above identity on [−t, 0] for all t ∈ (0,∞), we have

u(t, x)− g(x− tb) =

∫ 0

−t

f(t+ s, x+ sb)ds =

∫ t

0

f(s, x+ (s− t)b)ds,

which implies

u(t, x) = g(x− tb) +

∫ t

0

f(s, x+ (s− t)b)ds for (t, x) ∈ (0,∞)× Rn.

2.2. Laplace’s equation. Let n = 2, 3. Consider the Laplace’s equation

∆u =

n∑
i=1

∂2xi
u = 0 for x ∈ Ω ⊂ Rn, (2.7)

and the Poisson’s equation

−∆u = −
n∑

i=1

∂2xi
u = f for x ∈ Ω ⊂ Rn. (2.8)

Definition 2.2. A C2(Rn) function u satisfying (2.7) is called a harmonic function.

2.2.1. Mean-value formulas. Consider an open set Ω ⊂ Rn and suppose u is a
real function within Ω.

Definition 2.3. For u ∈ C (Ω), we define
(i) u satisfies the first mean value property if

u(x) =
1

ωnrn−1

∫
∂Br(x)

u(y)dSy for any Br(x) ⊂ Ω; (2.9)

(ii) u satisfies the second mean value property if

u(x) =
n

ωnrn

∫
Br(x)

u(y)dy for any Br(x) ⊂ Ω. (2.10)
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where ωn denotes the surface area of the unit sphere in Rn (ω2 = 2π and ω3 = 4π).
Lemma 2.4. These two definitions (i) and (ii) are equivalent.
Proof. First, from (2.9), we find

u(x)rn−1 =
1

ωn

∫
∂Br(x)

u(y)dSy for any Br(x) ⊂ Ω.

Integrating the above identity on [0, r], we have

u(x)
rn

n
=

1

ωn

∫ r

0

∫
∂Br̄(x)

u(y)dSydr̄ =
1

ωn

∫
Br(x)

u(y)dy,

which means that (i) implies (ii).
Second, from (2.10), we have

u(x)rn =
n

ωn

∫
Br(x)

u(y)dy =
n

ωn

∫ r

0

∫
∂Br̄(x)

u(y)dSydr̄.

We may differentiate the above identity to get

nu(x)rn−1 =
n

ωn

∫
∂Br(x)

u(y)dSy for any Br(x) ⊂ Ω,

which means that (ii) implies (i). □
Remark 2.5. By change of variable, we may write the mean-value properties in
the following equivalent ways:

(i) u satisfies the first mean-value property if

u(x) =
1

ωn

∫
∂B1(0)

u(x+ rω)dSω for any Br(x) ⊂ Ω.

(ii) u satisfies the second mean-value property if

u(x) =
n

ωn

∫
B1(0)

u(x+ ry)dy for any Br(x) ⊂ Ω.

Lemma 2.6. Let u ∈ C2(Ω) be harmonic in Ω. Then u satisfies the mean-value
property in Ω.
Proof. Consider

ϕ(r) =
1

ωnrn−1

∫
∂Br(x)

u(y)dSy =
1

ωn

∫
∂B1(0)

u(x+ rω)dSω.

Note that

u(x) = lim
ρ→0

(
1

ωnρn−1

∫
∂Bρ(x)

u(y)dSy

)
= lim

ρ→0
ϕ(ρ).

Using the change of variable and Green’s formula, we compute
dϕ

dr
=

1

ωn

∫
∂B1(0)

ω · ∇u(x+ rω)dSω

=
1

ωnrn−1

∫
∂Br(x)

∇u(y) · y − x

r
dSy

=
1

ωnrn−1

∫
∂Br(x)

∂u

∂n
dSy =

1

ωnrn−1

∫
Br(x)

∆u(y)dy = 0.

Thus ϕ : R → R is constant, and so

u(x) = lim
ρ→0

ϕ(ρ) = ϕ(r) =
1

ωnrn−1

∫
∂Br(x)

u(y)dSy.

□
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For a function u satisfying the mean-value property, u is not required to be smooth.
However a harmonic function is required to be C2. We prove these two are equiv-
alent.

Lemma 2.7. If u ∈ C(Ω) has mean-value property in Ω, then u is smooth and
harmonic in Ω.

Proof. Choose φ ∈ C∞
0 (B1(0)) with∫
B1(0)

φ(x)dx = 1 and φ(x) = ψ(|x|).

Note that

ωn

∫ 1

0

rn−1ψ(r)dr =

∫ 1

0

∫
∂Br(0)

φ(x)dSxdr =

∫
B1(0)

φ(x)dx = 1. (2.11)

Denote φε(·) = 1
εnφ(

·
ε ) for ε > 0. For any x ∈ Ω, we consider 0 < ε < dist(x, ∂Ω) <

+∞. By the change of variable, we have∫
Ω

u(y)φε(y − x)dy =

∫
Bε(0)

u(x+ y)φε(y)dy

=
1

εn

∫
Bε(0)

u(x+ y)φ
(y
ε

)
dy =

∫
B1(0)

u(x+ εy)φ(y)dy.

Therefore, from (2.11) and the mean-value property of u, we have∫
Ω

u(y)φε(y − x)dy =

∫
B1

u(x+ εy)φ(y)dy

=

∫ 1

0

rn−1

∫
∂B1(0)

u(x+ εrω)φ(rω)dSωdr

=

∫ 1

0

ψ(r)rn−1

∫
∂B1(0)

u(x+ εrω)dSωdr = u(x).

Hence we have

u(x) = (u ∗ φε) (x) for any x ∈ Ωε = {y ∈ Ω; dist(y, ∂Ω) > ε} ,

which implies u ∈ C∞. Moreover, using again the mean-value property of u and
the Green’s formula,∫

Br(x)

∆u(y)dy = rn−1 ∂

∂r

∫
|ω|=1

u(x+ rω)dSω

= rn−1 ∂

∂r
(ωnu(x)) = 0 for any Br(x) ⊂ Ω,

which implies ∆u = 0 in Ω. □

Now we prove the maximum principle for the functions satisfying mean-value prop-
erties.

Proposition 2.8. If u ∈ C
(
Ω̄
)

satisfies the mean-value property in Ω, then u
assumes its maximum and minimum only on ∂Ω unless u is constant.

Proof. We only prove for the maximum since the minimum case is similar. Let

Σ =

{
x ∈ Ω : u(x) =M = max

x∈Ω̄
u

}
⊂ Ω.
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First, from the definition of Σ and u ∈ C(Ω̄), we know that the set Σ is relatively
closed. Second, for any x0 ∈ Σ, we choose r small enough such that Br(x0) ⊂ Ω.
Using the mean-value property of u, we have

M = u(x0) =
n

ωnrn

∫
Br(x0)

u(y)dy ≤ Mn

ωnrn

∫
Br(x0)

1dy =M,

which implies u(x) = M for all x ∈ Br(x0). Therefore, Σ is both open and closed
in Ω which implies either Σ = ∅ or Σ = Ω. □
An important application of the maximum principle is establishing the uniqueness
of solutions to the Dirichlet problem in a bounded domain.

Theorem 2.9. Let g ∈ C(∂Ω) and f ∈ C(Ω). Then there exists at most one
solution u ∈ C2(Ω) ∩ C(Ω̄) of the Dirichlet problem{

−∆u(x) = f(x) in Ω,

u(x) = g(x) on ∂Ω.
(2.12)

Proof. If u1 and u2 both satisfy (2.12), apply Proposition 2.8 to the function v =
u1 − u2. □
Remark 2.10. In general, the uniqueness does not hold for an unbounded domain.
For example, we consider the following Dirichlet problem in the unbounded domain
Ω, {

−∆u(x) = 0 in Ω,

u(x) = 0 on ∂Ω.

where Ω = {x ∈ Rn; |x| > 1}. It is obviously that the function u(x) ≡ 0 is a
solution. For n = 2, by direct computation, u(x) = log |x| is also a solution. For
n = 3, by direct computation, u(x) = |x|−1 − 1 is also a solution.

We finish this subsection by Harnack inequality.

Theorem 2.11. Suppose u is harmonic in Ω. Then for any compact subset K of
Ω there exists a positive constant C = C(Ω,K) such that if u ≥ 0 in Ω, then

1

C
u(y) ≤ u(x) ≤ Cu(y) for any x, y ∈ K.

Proof. Let r = 1
4dist(K, ∂Ω). Choose x, y ∈ K with |x − y| ≤ r. Then, from the

mean-value property, we have

u(x) =
n

ωn(2r)n

∫
B2r(x)

u(z)dz ≥ n

2nωnrn

∫
Br(y)

u(z)dz =
1

2n
u(y).

Thus, we have 2−nu(y) ≤ u(x) ≤ 2nu(y) for all x, y ∈ K with |x − y| ≤ r. Since
K is connected and compact, we can cover K by a chain of finitely many balls
{Bi}N1 , each of which has radius r

2 and Bi ∩ Bi−1 6= ∅ for i = 2, · · · , N . Then
2−nNu(y) ≤ u(x) ≤ 2nNu(y) for all x, y ∈ K. □
2.2.2. Green function. In this subsection, we introduce the Green function which
is a tool to solve Poisson’s equation. Consider a harmonic function u in Rn (with
n = 2, 3) which depends only on r = |x − a| for some fixed a ∈ Rn. We set
v(r) = u(x). This implies

d2v

dr2
+
n− 1

r

dv

dr
= 0 ⇒ r

d2v

dr2
+ (n− 1)

dv

dr
= 0,

and hence

v(r) =

{
c1 + c2 log r, n = 2,

c3 + c4r
−1, n = 3,
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where ci ∈ R for i = 1, 2, 3, 4. We are interested in a function with a singularity
such that ∫

∂Br(a)

∂v

∂r
dS = 1 for any r > 0.

Hence we set for any fixed a ∈ Rn

Γ(a, x) =
1

2π
log |x− a|, for n = 2,

Γ(a, x) = − 1

4π
|x− a|−1, for n = 3.

To summarize, we have that for fixed a ∈ Rn, Γ(a, x) is harmonic at x 6= a, that is,
∆xΓ(a, x) = 0 for any x 6= a,

and has a singularity at x = a. Moreover, it satisfies∫
∂Br(a)

∂Γ

∂nx
(a, x)dSx = 1 for any r > 0.

By direct computation, we have the following Green’s identity.

Lemma 2.12. Suppose Ω is a bounded domain in Rn and that u ∈ C1(Ω̄)∩C2(Ω).
Then for any a ∈ Ω there holds

u(a) =

∫
Ω

Γ(a, x)∆u(x)dx−
∫
∂Ω

(
Γ(a, x)

∂u

∂nx
(x)− u(x)

∂Γ

∂nx
(a, x)

)
dSx.

Proof. We apply Green’s formula to u and Γ(a, ·) in the domain Ω\Br(a) for small
r > 0 and get∫

Ω\Br(a)

(Γ∆u− u∆Γ)dx

=

∫
∂Ω

(
Γ
∂u

∂n
− u

∂Γ

∂n

)
dSx −

∫
∂Br(a)

(
Γ
∂u

∂n
− u

∂Γ

∂n

)
dSx.

Note that ∆Γ = 0 in Ω \Br(a). Then we have

lim
r→0

∫
∂Br(a)

(
u
∂Γ

∂n
− Γ

∂u

∂n

)
dSx =

∫
Ω

Γ∆udx−
∫
∂Ω

(
Γ
∂u

∂n
− u

∂Γ

∂n

)
dSx.

For n = 3, we get by definition of Γ,∣∣∣∣∣
∫
∂Br(a)

Γ
∂u

∂n
dSx

∣∣∣∣∣ =
∣∣∣∣∣ 1

4πr

∫
∂Br(a)

∂u

∂n
dSx

∣∣∣∣∣
≤ r max

x∈∂Br(a)
|∇u| → 0 as r → 0,

∫
∂Br(a)

u
∂Γ

∂nx
dSx =

1

4πr2

∫
∂Br(a)

u(x)dSx → u(a) as r → 0.

We get the same conclusion for n = 2 in the same way. □

Remark 2.13. (i) For a /∈ Ω̄, the expression in the right side gives 0.
(ii) For any a ∈ Ω, Γ(a, ·) is integrable in Ω although it has a singularity.
(iii) By letting u = 1, we have

∫
∂Ω

∂Γ
∂nx

(a, x)dSx = 1 for any a ∈ Ω.

Now we begin to introduce the Green’s function. Suppose Ω is bounded domain in
Rn. Let u ∈ C1(Ω̄) ∩ C2(Ω). From Lemma 2.12, we know that, for all x ∈ Ω,

u(x) =

∫
Ω

Γ(x, y)∆u(y)dy −
∫
∂Ω

(
Γ(x, y)

∂u

∂ny
(y)− u(y)

∂Γ

∂ny
(x, y)

)
dSy. (2.13)
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If u solves the Dirichlet boundary value problem{
−∆u = f in Ω,

u(x) = φ(x) on ∂Ω,
(2.14)

for some f ∈ C(Ω̄) and φ ∈ C (∂Ω), then u can be expressed in terms of f and φ,
with one unknown term. We want to eliminate this term by adjusting Γ.
For any x ∈ Ω, we consider

G(x, y) = Γ(x, y) + Ψ(x, y) for (x, y) ∈ Ω× Ω̄,

for some Ψ(x, ·) ∈ C2(Ω̄) with ∆yΨ(x, y) = 0 in Ω. Using the Green’s formula for
Ψ(x, y), we have∫

Ω

Ψ(x, y)∆u(y)dy =

∫
∂Ω

(
Ψ(x, y)

∂u

∂ny
− u(y)

∂Ψ

∂ny
(x, y)

)
dSy. (2.15)

Combining (2.13) and (2.15), we know that

u(x) =

∫
Ω

G(x, y)∆u(y)dy −
∫
∂Ω

(
G(x, y)

∂u

∂ny
(y)− u(y)

∂G

∂ny
(x, y)

)
dSy.

Now by choosing Ψ appropriately, we are led to the important concept of Green’s
function. For each fixed x ∈ Ω choose Ψ(x, ·) ∈ C1(Ω̄) ∩ C2(Ω) such that{

∆yΨ(x, y) = 0 for y ∈ Ω,

Ψ(x, y) = −Γ(x, y) for y ∈ ∂Ω.
(2.16)

If such a Ψ exists, then the solution u to the Dirichlet problem (4.14) can be
expressed as

u(x) =

∫
Ω

G(x, y)f(y)dy +

∫
∂Ω

φ(y)
∂G

∂ny
(x, y)dSy. (2.17)

Now we discuss some properties of G as a function of x and y. Our first observation
is that the Green’s function is unique. This is proved by the maximum principle
since the difference of two Green’s functions are harmonic in Ω with zero boundary
value. Moreover, the function G is symmetric in the variables x and y:

Proposition 2.14. Green’s function G(x, y) is symmetric in Ω×Ω; that is G(x, y) =
G(y, x) for any x 6= y ∈ Ω.

Proof. Pick x1, x2 ∈ Ω with x1 6= x2. Choose r > 0 small such that Br(x1) ∩
Br(x2) = ∅. Denote G1(y) = G(x1, y) and G2(y) = G(x2, y). We apply Green’s
formula in Ω \Br(x1) ∪Br(x2) and get∫

∂Br(x1)

(
G1

∂G2

∂n
−G2

∂G1

∂n

)
dS +

∫
∂Br(x2)

(
G1

∂G2

∂n
−G2

∂G1

∂n

)
dS

=

∫
∂Ω

(
G1

∂G2

∂n
−G2

∂G1

∂n

)
dS −

∫
Ω\Br(x1)∪Br(x2)

(G1∆G2 −G2∆G1) .

Since Gi is harmonic for y 6= xi, i = 1, 2, and vanishes on ∂Ω, we have∫
∂Br(x1)

(
G1

∂G2

∂n
−G2

∂G1

∂n

)
dS +

∫
∂Br(x2)

(
G1

∂G2

∂n
−G2

∂G1

∂n

)
dS = 0.

Note that, from the definition of G1 and G2, as r → 0,∫
∂Br(x1)

G1
∂G2

∂n
dS =

∫
∂Br(x1)

(Γ(x1, y) + Ψ(x1, y))
∂G2

∂n
(y)dSy → 0,∫

∂Br(x2)

G2
∂G1

∂n
dS =

∫
∂Br(x2)

(Γ(x2, y) + Ψ(x2, y))
∂G1

∂n
(y)dSy → 0,
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∂Br(x1)

G2
∂G1

∂n
dS =

∫
∂Br(x1)

G2(y)

(
∂Γ

∂n
(x1, y) +

∂Ψ

∂n
(x1, y)

)
dSy → G2(x1),∫

∂Br(x2)

G1
∂G2

∂n
dS =

∫
∂Br(x2)

G1(y)

(
∂Γ

∂n
(x2, y) +

∂Ψ

∂n
(x2, y)

)
dSy → G1(x2).

Therefore, we have G2(x1) = G1(x2) which means G(x1, x2) = G(x2, x1). □

In the next two subsections, we will build Green’s functions for two regions with
simple geometry, namely the ball BR(0) and the half-space Rn

+. Everything depends
upon our explicitly solving the corrector problem (2.16) in these regions, and this
in turn depends upon some geometric reflection tricks.
A. Green’s function for a ball. To construct Green’s function for the ball BR(0),
we will employ a kind of reflection through the sphere ∂BR(0).

Definition 2.15. Given a fixed sphere ∂BR(0), the inversion of a point x in Rn is
defined to be

x∗ =
R2

|x|2
x.

Remark 2.16. A useful effect of this inversion is that the origin 0 is the image of
∞ , and ∞ is the image of 0. Under this inversion, spheres are transformed into
spheres, and the exterior of a sphere is transformed to the interior, and vice versa.

We now employ inversion through the sphere to compute Green’s function for the
ball BR(0). Fix x ∈ BR(0). Recall that, we must find a corrector function Ψ(x, y)
solving {

∆yΨ(x, y) = 0 for y ∈ BR(0),

Ψ(x, y) = −Γ(x, y) for y ∈ ∂BR(0),

then the Green’s function will be

G(x, y) = Γ(x, y) + Ψ(x, y) for (x, y) ∈ BR(0)× B̄R(0).

The idea now is to “invert the singularity” from x ∈ BR(0) to x∗ 6= BR(0). Assume
for the moment n = 3. Now the mapping y 7→ Γ(x∗, y) is harmonic for y 6= x∗.
Therefore, we have that the mapping y 7→ | xR |−1Γ(x∗, y) is also harmonic for y 6= x∗

which implies
Ψ(x, y) = Γ

(∣∣∣ x
R

∣∣∣x∗, ∣∣∣ x
R

∣∣∣ y)
is harmonic in BR(0). Moreover, if y ∈ ∂BR(0) and x 6= 0, we have∣∣∣∣∣∣ x

R

∣∣∣x∗ − ∣∣∣ x
R

∣∣∣ y∣∣∣2 =
|x|2

R2

(
R2 − 2

R2

|x|2
x · y + R4

|x|2

)
=
(
|x|2 − 2x · y +R2

)
= |x− y|2,

which implies Ψ(x, y) = Γ(x, y) for y ∈ ∂BR(0). This identity is also true for n = 2.
Based on the above argument, we have the following Proposition.

Proposition 2.17. The Green’s function for the ball BR(0) is given by

G(x, y) =
1

2π

(
log |x− y| − log

∣∣∣∣ R|x|x− |x|
R
y

∣∣∣∣) , for n = 2,

G(x, y) = − 1

4π

(
|x− y|−1 −

∣∣∣∣ R|x|x− |x|
R
y

∣∣∣∣−1
)
, for n = 3.

Next we calculate the normal derivative of Green’s function on the sphere.
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Lemma 2.18. Suppose G is the Green’s function in BR(0). Then there holds
∂G

∂n
(x, y) =

R2 − |x|2

ωnR|x− y|n
, for any x ∈ BR and y ∈ ∂BR.

Proof. We just consider the case n = 3. By direct computation,

∂yiG(x, y) = − 1

4π

xi − yi
|x− y|3

+
|x|
4πR

(
R
|x|xi −

|x|
R yi

)
|x− y|3

=
yi

4πR2

R2 − |x|2

|x− y|3
.

On the other hand, we have ni = yi

R for |y| = R. Thus

∂G

∂n
(x, y) =

3∑
i=1

n⃗ · ∇yG(x, y) =
1

4πR

R2 − |x|2

|x− y|3
.

□

We denote by K(x, y) the function in Lemma 2.18 for x ∈ Ω and y ∈ ∂Ω. It is
called a Poisson Kernel and has the following properties:

(i) K(x, y) is smooth for x 6= y;
(ii) K(x, y) > 0 for |x| < R;
(iii)

∫
|y|=R

K(x, y)dSy = 1 for any |x| < R.
The following result gives the existence of harmonic functions in balls with pre-
scribed Dirichlet boundary value.

Theorem 2.19 (Poisson Integral Formula). For φ ∈ C (∂BR(0)), the function u
defined by

u(x) =


∫
∂BR(0)

K(x, y)φ(y)dSy, |x| < R,

φ(x), |x| = R,

satisfies u ∈ C(B̄R(0)) ∩ C∞(BR(0)) and{
∆u = 0 in Ω,

u = φ on ∂Ω.

Proof. The proof is based on the properties of K(x, y) and we left it as an exercise.
□

Remark 2.20. In the poisson integral formula, by letting x = 0, we have

u(0) =
1

ωnRn−1

∫
∂BR(0)

φ(y)dSy,

which is the mean value property.

Now, we introduce the Harnack’s Inequality for harmonic equation in a ball.

Lemma 2.21 (Harnack’s Inequality). Suppose u is harmonic in BR(x0) and u ≥ 0.
Then there holds(

R

R+ r

)n−2
R− r

R+ r
u(x0) ≤ u(x) ≤

(
R

R− r

)n−2
R+ r

R− r
u(x0),

where r = |x− x0| < R.

Proof. We may assume x0 = 0 and u ∈ C
(
B̄R

)
. Note that u is given by the Poisson

integral formula

u(x) =
1

ωnR

∫
∂BR

R2 − |x|2

|x− y|n
u(y)dSy.
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Sine R− |x| ≤ |y − x| ≤ R+ |x| for |y| = R, we have
1

ωnR

R− |x|
R+ |x|

(
1

R+ |x|

)n−2 ∫
∂BR

u(y)dSy ≤ u(x),

1

ωnR

R+ |x|
R− |x|

(
1

R− |x|

)n−2 ∫
∂BR

u(y)dSy ≥ u(x).

Recall the following mean value property

u(0) =
1

ωnRn−1

∫
∂BR

u(y)dSy.

Based on the above inequalities and identity, we finish the proof. □
Corollary 2.22. If harmonic function u in Rn is bounded above and below, then
u ≡ C.

Proof. We assume u ≥ 0 in Rn. Taking any point x ∈ Rn and applying Lemma 2.21
to any ball BR(0) with R > |x|, we have(

R

R+ |x|

)n−2
R− |x|
R+ |x|

u(0) ≤ u(x) ≤
(

R

R− |x|

)n−2
R+ |x|
R− |x|

u(0),

which implies u(x) = u(0) by letting R→ ∞. □
B. Green’s function for a half-space. Consider the half-space

Rn
+ = {x = (x1, . . . , xn) ∈ Rn|xn > 0} .

Although this region is unbound, and so the calculations in the subsection 2.2.2
do not directly apply, we will attempt nevertheless to build Green’s function us-
ing the ideas developed earlier. Later of course, we must check directly that the
corresponding representation formula is valid.

Definition 2.23. For x = (x1, . . . , xn) ∈ Rn
+, its reflection in the plane ∂Rn

+ is the
point

x∗ = (x1, x2, . . . , xn−1,−xn) ∈ Rn
−.

We will solve problem (2.16) for the half-space by setting
Ψ(x, y) = Γ(x∗, y) = Γ(x1, . . . , xn−1,−xn, y).

The idea is that the corrector Ψ(x, y) is built from Γ by reflecting the singularity
from x ∈ Rn

+ to x∗ ∈ Rn
−. We note

Ψ(x, y) = Γ(x, y) on y ∈ ∂Rn
+,

and thus {
∆yΨ(x, y) = 0 in Rn

+,

Ψ(x, y) = −Γ(x, y) on ∂Rn
+,

as required. Based on the above argument, we have the following proposition.

Proposition 2.24. The Green’s function for the half-space Rn
+ is given by

G(x, y) =
1

2π
(log |x− y| − log |x∗ − y|) , for n = 2,

G(x, y) = − 1

4π

(
|x− y|−1 − |x∗ − y|−1

)
, for n = 3.

Next we calculate the normal derivative of Green’s function on the sphere.

Lemma 2.25. Suppose G is the Green’s function in Rn
+. Then there holds

∂G

∂n
(x, y) =

2xn
ωn

1

|x− y|n
, for any x ∈ Rn

+ and y ∈ ∂Rn
+.
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Proof. We just consider the case n = 3. By direct computation,

∂y3
G(x, y) = − 1

4π

(
x3 − y3
|x− y|3

− −x3 − y3
|x∗ − y|3

)
= −x3

2π

1

|x− y|3
.

Therefore
∂G

∂n
(x, y) = −∂y3G(x, y) =

x3
2π

1

|x− y|3
, for any x ∈ R3

+ and y ∈ ∂R3
+.

□

Suppose now u solves the Dirichlet problem{
∆u = 0 in Rn

+,

u = g on ∂Rn
+.

(2.18)

Then from (2.17), we expect

u(x) =
2xn
ωn

∫
∂Rn

+

g(y)

|x− y|n
dy, for x ∈ Rn

+, (2.19)

to be a representation formula for our solution. The function

K(x, y) =
2xn
ωn

1

|x− y|n
for all (x, y) ∈ Rn

+ × ∂Rn
+,

is Poisson’s kernel for Rn
+, and (2.19) is Poisson’s formula.

We must now check directly that formula (2.19) does indeed provide us with a
solution of the Dirichlet Problem (2.18).

Theorem 2.26 (Poisson’s formula for Rn
+). Assume g ∈ C(Rn−1) ∩ L∞(Rn−1),

and define u by (2.19). Then
(i) u ∈ C∞(Rn) ∩ L∞(Rn

+),
(ii) ∆u = 0 in Rn

+,
(iii) lim

x→x0

x∈Rn
+

u(x) = g(x0) for each point x0 ∈ ∂Rn
+.

Proof. The proof is based on the property of K(x, y) and we left it as an exercise.
□

2.2.3. Energy method. Most of our analysis of harmonic functions thus far has
depended upon fairly explicit representation formulas entailing the Green’s func-
tions. In this subsection, we will introduce some energy methods, which is to say
techniques involving the L2-norms of various expressions.
A. Uniqueness. Consider the Dirichlet Problem{

−∆u(x) = f(x) in Ω,

u(x) = g(x) on ∂Ω.
(2.20)

We have already employed the maximum principle in Theorem 2.9 to show unique-
ness, but now we set forth a simple alternative proof. Assume Ω is open, bounded
and ∂Ω is C1.

Theorem 2.27 (Uniqueness). There exists at most one solution u ∈ C2(Ω̄) of (2.20).

Proof. Assume ũ is another solution and set ω := u − ũ. Then ∆ω = 0 in Ω, and
so an integration by parts shows

0 = −
∫
Ω

ω∆ωdx =

∫
Ω

|∇ω|2dx.

Thus ∇u ≡ 0 in Ω and since ω = 0 on ∂Ω, we deduce ω = u− ũ = 0 in Ω. □
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B. Dirichlet’s principle. Next let us demonstrate that a solution of the Dirichlet
problem (2.20) can be characterized as the minimizer of an appropriate functional.
For this, we define the energy functional

E(ω) :=
∫
Ω

(
1

2
|∇ω|2 − ωf

)
dx,

ω belonging to the admissible set

A :=
{
ω ∈ C2(Ω̄)|ω = g on ∂Ω

}
.

Theorem 2.28 (Dirichlet’s principle). Assume u ∈ C2(Ω̄) solves (2.20). Then

E(u) = min
ω∈A

E(ω). (2.21)

Conversely, if u ∈ A satisfies (2.21), then u solves the boundary-value prob-
lem (2.20).

In other words if u ∈ A, the PDE −∆u = f is equivalent to the statement that u
minimizes the energy E(·).

Proof. 1. For any ω ∈ A, from (2.20), we see that∫
Ω

(−∆u− f)(u− ω)dx = 0.

By integration by parts and u− ω = 0 on the boundary ∂Ω, we have∫
Ω

∇u · ∇(u− ω)− f(u− ω)dx = 0,

which implies∫
Ω

(
|∇u|2 − uf

)
dx =

∫
Ω

(∇u · ∇ω − ωf) dx

≤
∫
Ω

(
1

2
|∇u|2 + 1

2
|∇ω|2 − ωf

)
dx.

Rearranging, we obtain E(u) ≤ E(ω) for all ω ∈ A. Since u ∈ A, we conclude
E(u) = min

ω∈A
E(ω).

2. Conversely, suppose (2.21) holds. Fix any v ∈ C∞
c (Ω) and denote

f(s) := E(u+ sv) for all s ∈ R.

Since u+ sv ∈ A for each s, we have

min
s∈R

f(s) = f(0) ⇒ d

ds
f(0) = 0.

On the other hand, from the definition of E , we see that

f(s) =

∫
Ω

(
1

2
|∇u+ s∇v|2 − (u+ sv)f

)
dx

=

∫
Ω

(
1

2
|∇u|2 + s∇u · ∇v + s2

2
|∇v|2 − (u+ sv)f

)
dx,

which implies

0 = f ′(0) =

∫
Ω

(∇u · ∇v − fv) dx =

∫
Ω

(−∆u− f) vdx.

This identity is valid for each function v ∈ C∞
c (Ω) and so −∆u = f in Ω. □
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2.3. 1D Heat equation. Consider the 1D homogeneous heat equation

∂tu− ∂2xu = 0, for (t, x) ∈ [0,∞)× U, (2.22)

and the 1D nonhomogeneous heat equation

∂tu− ∂2xu = f, for (t, x) ∈ [0,∞)× U, (2.23)

where f is a regular function and U is R or half-line R+ or finite interval [0, L].

2.3.1. The initial value problem on R. Our first purpose in this subsection is
to solve the problem {

∂tu = ∂2xu, in (t, x) ∈ [0,∞)× R,
u|t=0 = ϕ(x), for x ∈ R.

(2.24)

The basic idea is to solve it for a particular ϕ and then build the general solution
from this particular one. We first recall the following five invariance properties of
the 1D heat equation (2.22):

(1) If u(t, x) is a solution of (2.22), then u(t, x− y) is also a solution of (2.22)
for any y ∈ R.

(2) If u is a solution of (2.22), then any derivative of u is also a solution of (2.22).
(3) A linear combination of solutions of (2.22) is also a solution of (2.22).
(4) An integral of solution is also a solution: if S(t, x) is a solution of (2.22),

then so is

v(t, x) =

∫
R
S(t, x− y)g(y)dy,

for any given function g(y).
(5) If u(t, x) is a solution of (2.22), then the dilated function ua(t, x) = u(at,

√
ax)

is also a solution of (2.22) for any a > 0.
Our goal is to find a particular solution of (2.22) and then to construct all solu-
tions (2.22) by property (4). Consider the particular solution Q(t, x) for (2.22) with
the following special initial data

Q(0, x) = 1 for x > 0, Q(0, x) = 0 for x < 0. (2.25)

Notice that the above initial data does not change under dilation. We will find the
formula of Q(t, x) in the following three steps.
Step 1. We look for Q(t, x) having the special structure

Q(t, x) = g(s), where s = x√
4t
, (2.26)

and the function g : R → R must be found. We expect Q to have the above special
form since such structure is invariance under the dilation x→

√
ax and t→ at.

Step 2. Using (2.26) and the chain rule, we have

∂tQ =
dg

ds

ds

dt
= − 1

2t

x√
4t
g′(s),

∂xQ =
dg

ds

ds

dx
=

1√
4t
g′(s), ∂2xQ =

d∂xQ

ds

ds

dx
=

1

4t
g′′(s).

Combining the above identities with (2.22), we have

g′′(s) + 2sg′(s) = 0 ⇒ Q(t, x) = g(s) = c1

∫ s

0

e−ρ2

dρ+ c2 = c1

∫ x√
4t

0

e−ρ2

dρ+ c2.
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Step 3. We find the value of c1 and c2 from the initial data of Q. From the initial
data (2.25), we see that

Fix x > 0, 1 = lim
t→0+

Q(t, x) = c1

∫ ∞

0

e−ρ2

dρ+ c2 = c1

√
π

2
+ c2,

Fix x < 0, 0 = lim
t→0+

Q(t, x) = c1

∫ −∞

0

e−ρ2

dρ+ c2 = −c1
√
π

2
+ c2.

Based on the above identities, we have c1 = 1√
π

and c2 = 1
2 which implies

Q(t, x) =
1

2
+

1√
π

∫ x√
4t

0

e−ρ2

dρ, for t > 0.

Having found Q(t, x), we now consider

S(t, x) =
∂Q

∂x
(t, x) =

1√
4πt

e−
x2

4t , for t > 0.

Definition 2.29. The function

S(t, x) =
1√
4πt

e−
x2

4t , for (t, x) ∈ (0,∞)× R,

is called the fundamental solution of the 1D heat equation.

For any ϕ : R → R, we also define

u(t, x) =

∫
R
S(t, x− y)ϕ(y)dy, for (t, x) ∈ (0,∞)× R. (2.27)

Theorem 2.30. Assume ϕ ∈ C(R)∩L∞(R), and define u by (2.27). Then we have
(i) u ∈ C∞((0,∞)× R).
(ii) ∂tu(t, x)− ∂2xu(t, x) = 0 for (t, x) ∈ (0,∞)× R.
(iii) lim

(t,x)→(0,x0)
t>0, x∈R

u(t, x) = ϕ(x0) for each point x0 ∈ R.

Proof. Proof of (i) and (ii). Since the function S(t, x) is infinitely differentiable,
with uniformly bounded derivatives of all orders, on [δ,∞)×R for each δ > 0, we see
that the function u ∈ C∞((0,∞)× R). Moreover, by an elementary computation,

∂tu(t, x)− ∂2xu(t, x) =

∫
R

(
∂tS − ∂2xS

)
(t, x− y)ϕ(y)dy = 0,

since S(t, x) is a solution for (2.22).
Proof of (iii). Fix x0 ∈ R and ε > 0. Choose δ > 0 small enough such that

|ϕ(y)− ϕ(x0)| < ε, for all y ∈ (x0 − δ, x0 + δ). (2.28)

For any x ∈ (x0 − δ
2 , x

0 + δ
2 ), from

∫
R S(t, ρ)dρ = 1, we have∣∣u(t, x)− ϕ(x0)

∣∣ ≤ ∫
R
S(t, x− y)|ϕ(y)− ϕ(x0)|dy ≤ I1 + I2 + I3,

where

I1(t, x) =
∫ x0+δ

x0−δ

S(t, x− y)|ϕ(y)− ϕ(x0)|dy,

I2(t, x) =
∫ x0−δ

−∞
S(t, x− y)|ϕ(y)− ϕ(x0)|dy,

I3(t, x) =
∫ ∞

x0+δ

S(t, x− y)|ϕ(y)− ϕ(x0)|dy.
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From (2.28), we see that

I1(t, x) ≤ ε

∫
R
S(t, x− y)dy ≤ ε.

Then, we note that, for any x ∈ (x0 − δ
2 , x

0 + δ
2 ) and y ≤ x0 − δ, we have

|y − x0| ≤ |x− y|+ δ

2
≤ |x− y|+ 1

2
|y − x0| ⇒ 1

2
|y − x0| ≤ |y − x|.

Therefore, using the change of variable z = y − x0 and s = z√
t
, we have

I2(t, x) ≤
‖ϕ‖L∞
√
4πt

∫ x0−δ

−∞
e−

|x−y|2
4t dy

≤ ‖ϕ‖L∞
√
4πt

∫ x0−δ

−∞
e−

|y−x0|2
16t dy

≤ ‖ϕ‖L∞
√
4πt

∫ −δ

−∞
e−

z2

16t dz ≤ ‖ϕ‖L∞
√
4π

∫ − δ√
t

−∞
e−

s2

16 ds→ 0, as t→ 0+.

Using a similar argument as above, we also have
I3(t, x) → 0, as t→ 0+.

Combining the above estimates, we complete the proof of (iii). □
Notice that the continuity of ϕ was used only in only one part of the above proof. In
actually, we can allow ϕ to have a jump discontinuity (See for example for Q(0, x)).
Moreover, we can consider the piecewise continuity initial data.

Definition 2.31. A function ϕ : R → R is said to have a jump at x0 if both the
limit of ϕ(x) as x→ x0 from the right exists (denoted ϕ(x0+)) and the limit from
the left exists (denoted ϕ(x0−)) but these two limits are not equal. A function
ϕ : R → R is called piecewise continuous if in each finite interval it has only a finite
number of jump and it is continuous at all other points.

Theorem 2.32. Let ϕ : R → R be a bounded and piecewise continuous function.
We define u by (2.27). Then we have

(i) u ∈ C∞((0,∞)× R).
(ii) ∂tu(t, x)− ∂2xu(t, x) = 0 for (t, x) ∈ (0,∞)× R.
(iii) lim

(t,x)→(0,x0)
t>0, x∈R

u(t, x) = 1
2 (ϕ(x0+) + ϕ(x0−)) for each point x0 ∈ R. Ay every

point of continuity, the limit equals ϕ(x).

Proof. The proof is similar to Theorem 2.30 and we left it as an exercise. □
Remark 2.33. There are in fact infinitely many solutions of{

∂tu = ∂2xu, for (t, x) ∈ (0,∞)× R,
u|t=0 = 0, for x ∈ R.

See for instance [2, Chapter 7.1]. Each of these solutions besides u ≡ 0 grows
very rapidly as |x| → ∞. The existence of such solutions tell us that we should
not expect uniqueness (without any condition) for the solution of (2.24). However,
maybe the conditional uniqueness (for example under a suitable condition of the
growth rate) of the solution for (2.24) is true.

Our second purpose in this subsection is to solve the problem{
∂tu = ∂2xu+ f, in (t, x) ∈ [0,∞)× R,

u|t=0 = ϕ(x), for x ∈ R.
(2.29)
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We claim that the solution of (2.29) is

u(t, x) =

∫
R
S(t, x− y)ϕ(x)dy +

∫ t

0

∫
R
S(t− s, x− y)f(s, y)dyds. (2.30)

In actually, the definition of the above solution come from the Duhamels’ principle
which is a general method for obtaining solutions to inhomogeneous linear evolution
equations like the heat equation, wave equation, and Transport equation. We start
by a simplest ODE example:

du

dt
(t) + u(t) = f(t) with u(0) = ϕ ∈ R.

The unique solution for the above ODE is

u(t) = S(t)ϕ+

∫ t

0

S(t− s)f(s)ds where S(t) = e−t. (2.31)

The first term in (2.31) represents the solution of the homogeneous ODE. The
second term in (2.31) represents the solution of the inhomogeneous ODE with zero
initial data, and it is the effect of the source term f .
Now, let us come back the 1D heat equation (2.29). Notice that there is an analogy
between (2.30) and (2.31). More precisely, we denote S(t) by a operator

(S(t)ϕ) (x) =
∫
R
S(t, x− y)ϕ(y)dy, for t > 0.

Then the formula (2.30) can be rewrite as

u(t) = S(t)ϕ+

∫ t

0

S(t− s)f(s)ds, for t > 0.

Now we check (2.30) is a solution for (2.29).

Theorem 2.34. Assume f ∈ C∞([0,∞) × R) with compact support and ϕ ∈
C(R) ∩ L∞(R). Define u by (2.30), then we have

(i) u ∈ C((0,∞)× R).
(ii) ∂tu(t, x)− ∂2xu(t, x) = f(t, x) for (t, x) ∈ (0,∞)× R.
(iii) lim

(t,x)→(0,x0)
t>0, x∈R

u(t, x) = ϕ(x0) for each point x0 ∈ R.

Proof. We decompose the function u in (2.30),
u(t, x) = u1(t, x) + u2(t, x), for (t, x) ∈ (0,∞)× R,

where
u1(t, x) =

∫
R
S(t, x− y)ϕ(y)dy,

u2(t, x) =

∫ t

0

∫
R
S(t− s, x− y)f(s, y)dyds.

From Theorem 2.30, we see that the function u1(t, x) ∈ C∞((0,∞)×R) and satisfy
∂tu1(t, x)− ∂2xu1(t, x) = 0 and lim

(t,x)→(0,x0)
t>0, x∈R

u1(t, x) = ϕ(x0).

Therefore, to complete the proof of Theorem 2.34, it is sufficient to show that
u2 ∈ C∞((0,∞)× R) and satisfy

∂tu2(t, x)− ∂2xu2(t, x) = f(t, x) and lim
(t,x)→(0,x0)
t>0, x∈R

u2(t, x) = 0.

Since the fundamental solution S(t, x) has a singularity at t = 0, we cannot directly
take the derivative of S(t, x) and so we cannot take the derivative for the integral
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form. However, the function f(t, x) ∈ C∞ which means that we can directly take
derivative of it. More precisely, we change variables (s, y) → (t − s, x − y) and
rewrite

u2(t, x) =

∫ t

0

∫
R
S(s, y)f(t− s, x− y)dyds, for (t, x) ∈ (0,∞)× R.

By an elementary computation, we know that,

∂mx u2(t, x) = (−1)m
∫ t

0

∫
R
S(s, y)∂my f(t− s, x− y)dyds,

∂tu2(t, x) = −
∫ t

0

∫
R
S(s, y)∂sf(t− s, x− y)dyds+

∫
R
S(t, y)f(0, x− y)dy.

Using an induction argument, we have u2 ∈ C∞((0,∞) × R). Moreover, from the
above two identities, we see that

∂tu2(t, x)− ∂2xu2(t, x) = I3(t, x) + I4(t, x) + I5(t, x),

where

I3(t, x) =
∫
R
S(t, y)f(0, x− y)dy,

I4(t, x) =
∫ ε

0

∫
R
S(s, y)(∂t − ∂2x)f(t− s, x− y)dyds,

I5(t, x) =
∫ t

ε

∫
R
S(s, y)(−∂s − ∂2y)f(t− s, x− y)dyds.

Note that

I4(t, x) ≤
(
‖∂tf‖L∞

t,x
+ ‖∂2xf‖L∞

t,x

)∫ ε

0

∫
R
S(s, y)dyds ≤ Cfε.

Note also that, on the region (s, y) ∈ (ε, t)×R, the function S(s, y) is smooth, and
so we can use integrating by parts. More precisely, we have

I5(t, x) =
∫ t

ε

∫
R

[(
∂s − ∂2y

)
S(s, y)

]
f(t− s, x− y)dyds

+

∫
R
S(ε, y)f(t− ε, x− y)dy −

∫
R
S(t, y)f(0, x− y)dy

=

∫
R
S(ε, y)f(t− ε, x− y)dy − I3(t, x),

since the function S(s, y) solves the heat equation. Combining the above estimate
and identity, we see that

∂tu2(t, x)− ∂2xu2(t, x) = lim
ε→0

∫
R
S(ε, y)f(t− ε, x− y)dy = f(t, x),

the limit as ε→ 0 being computed as in the proof of Theorem 2.30. Last, from the
definition of u2(t, x), we have

‖u(t, x)‖L∞
x

≤ ‖f(t, x)‖L∞
t,x

∫ t

0

∫
R
S(s, y)dyds ≲ t ‖f(t, x)‖L∞

t,x
→ 0, as t→ 0.

□
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2.3.2. The initial-boundary value problem on R+. In this subsection, we fist
study the Dirichlet problem of 1D heat equation on half-line R+. First, we consider

∂tv(t, x) = ∂2xv(t, x), for (t, x) ∈ R+ × R+,

v(0, x) = ϕ(x), for t = 0,

v(t, 0) = 0, for x = 0.

(2.32)

We are looking for a solution formula analogous to (2.27). The general strategy is
that we will reduce our problem to the old one. Note that the initial data ϕ(x)
of (2.32) is defined only for x ≥ 0 with ϕ(0) = 0. Thus, we can consider the unique
odd extension of ϕ to the whole line. That is

ϕodd(x) =


ϕ(x) for x > 0,

− ϕ(−x) for x < 0,

0 for x = 0.

(2.33)

Let u(t, x) be the solution of{
∂tu(t, x) = ∂2xu(t, x), for (t, x) ∈ R+ × R,
u(0, x) = ϕodd(x), for x ∈ R.

(2.34)

According to §2.3.1, it is given by the formula

u(t, x) =

∫
R
S(t, x− y)ϕ(y)dy, for (t, x) ∈ R+ × R+.

Consider the restriction of u(t, x) on R+ × R+,

v(t, x) := u(t, x), for (t, x) ∈ R+ × R+.

Since u(t, x) is a solution of (2.34) on R+ × R with odd initial data, u(t, x) is also
a odd function on R for any t ∈ R+ and so u(t, 0) = 0 for all t ∈ R+. This implies
that v(t, 0) = 0 for all t ∈ R+ is also true. Furthermore, v solves the PDE as well
as the initial condition for x > 0, simple because it is equal to u for x > 0 and u
satisfies the same PDE for all x and the same initial condition for x > 0.
Now, we except to find the explicit formula for v(t, x). First, from the formula for
u(t, x), ϕodd(x) is an odd function and change of variable, we have

u(t, x) =

∫ ∞

0

S(t, x− y)ϕ(y)dy −
∫ 0

−∞
S(t, x− y)ϕ(−y)dy

=

∫ ∞

0

(S(t, x− t)− S(t, x+ y))ϕ(y)dy.

Hence, for (t, x) ∈ R+ × R+, we have

v(t, x) =
1√
4πt

∫ ∞

0

(
e−

(x−y)2

4t − e−
(x+y)2

4t

)
ϕ(y)dy.

We have just carried out the method of odd extensions or reflection method, so
called because the graph of ϕodd(x) is the reflection of the graph of ϕ(x) across the
origin.
Second, we consider the following Neumann problem

∂tw(t, x) = ∂2xw(t, x), for (t, x) ∈ R+ × R+,

w(0, x) = ϕ(x), for t = 0,

∂xw(t, 0) = 0, for x = 0.

(2.35)
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Using again the reflection method (consider an even extension), we obtain an ex-
plicit formula for w(t, x):

w(t, x) =
1√
4πt

∫ ∞

0

(
e−

(x−y)2

4t + e−
(x+y)2

4t

)
ϕ(y)dy.

Last, we consider the 1D inhomogeneous heat equation on half-line R+. Consider
∂tv(t, x) = ∂2xv(t, x) + f(t, x), for (t, x) ∈ R+ × R+,

v(0, x) = ϕ(x), for t = 0,

v(t, 0) = 0, for x = 0.

(2.36)

Using again the reflection method (consider an odd extension), we obtain an explicit
formula for v(t, x):

v(t, x) =

∫ ∞

0

(S(t, x− y)− S(t, x+ y))ϕ(y)dy

+

∫ t

0

∫ ∞

0

(S(t− s, x− y)− S(t− s, x+ y)) f(s, y)dyds.

Now we consider the more complicated problem of a boundary source h(t) on the
half-line; that is,

∂tv(t, x) = ∂2xv(t, x) + f(t, x), for (t, x) ∈ R+ × R+,

v(0, x) = ϕ(x), for t = 0,

v(t, 0) = h(t), for x = 0.

(2.37)

We may use the following subtraction device to reduce (2.37) to (2.36). Consider
an auxiliary function V (t, x) = v(t, x)− h(t). Then V (t, x) satisfy

∂tV (t, x) = ∂2xV (t, x) + f(t, x)− h′(t), for (t, x) ∈ R+ × R+,

V (0, x) = ϕ(x)− h(0), for t = 0,

V (t, 0) = 0, for x = 0.

We have known that how to find an explicit formula for V (t, x) and once we find
V (t, x), we recover v by v(t, x) = V (t, x)− h(t).

2.3.3. Maximum Principle. In this subsection, we study the qualitative property
of the 1D heat equation in a rectangle (t, x) ∈ DT,ℓ = [0, T ]× (0, ℓ). More precisely,
we consider

∂tu− ∂2xu = f(t, x), for (t, x) ∈ DT,ℓ = [0, T ]× (0, ℓ). (2.38)
We start by the maximum principle for 1D heat equation.

Theorem 2.35. Suppose u = u(t, x) is the solution to the 1D heat equation (2.38).
Assume that the source term f = f(t, x) is nowhere positive: f(t, x) ≤ 0 for all
(t, x) ∈ DT,ℓ. Then the maximum of u(t, x) on the closed rectangle D̄T,ℓ is attained
at t = 0 or x = 0 or x = ℓ.

Proof. First, let us to prove the Theorem under the stronger assumption f(t, x) < 0
in DT,ℓ which implies

∂tu(t, x) < ∂2xu(t, x) in DT,ℓ. (2.39)
Suppose first that u(t, x) has a local maximum at a point (t0, x0) in the Int(DT,ℓ).
Then we have

∂tu(t0, x0) = ∂xu(t0, x0) = 0. (2.40)
Our assumption implies that the scalar function h(x) = u(t0, x) has a maximum at
x = x0. Thus, by the second derivative test for functions of a single variable,

h′′(x0) = ∂2xu(t0, x0) ≤ 0. (2.41)



INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS 25

However, the requirements (2.40) and (2.41) are clearly incompatible with the in-
equality (2.41). In conclusion, the solution u(t, x) cannot have a local maximum
at any point in the Int(DT,ℓ). Then, we suppose that u(t, x) has a local maxi-
mum at a point (T, x0) for x0 ∈ (0, ℓ). Note that, our assumption implies that
the scalar function g(t) = u(t, x0) would be nondecreasing at t = T , and hence
g′(T ) = ∂tu(T, x0) ≥ 0. The preceding argument also implies that ∂2xu(T, x0) ≤ 0
and again these two requirements are incompatible with (2.39). We conclude that
any (local) maximum must attend at one of the other three sides of the rectangle
D̄T,ℓ, in accordance with the statement of the theorem.
Second, we expect to generalize the argument to the case f(t, x) ≤ 0 and this will
require a little trick. Starting with the solution u(t, x) to (2.38), we set

vε(t, x) = u(t, x) + εx2, where ε > 0.

Then by direct computation, we have
∂tv(t, x)− ∂2xv(t, x) = f̃(t, x) where f̃(t, x) = f(t, x)− 2ε < 0.

Thus, by the previous argument, a local maximum of v(t, x) can attend only at
t = 0 or x = 0 or x = ℓ. Let M denote the maximum value of u(t, x) on the
indicated three sides of the rectangle. Then we have the maximum value of v(t, x)
on the indicated three sides of the rectangle is smaller than M + εℓ2. Therefore

max
(t,x)∈D̄T,ℓ

v(t, x) ≤M + εℓ2 ⇒ max
(t,x)∈D̄T,ℓ

u(t, x) ≤M + εℓ2.

Let ε→ 0+ in the above inequality, we complete the proof of Theorem 2.35. □

Consider the Dirichlet problem for the 1D heat equation:
∂tu− ∂2xu = f(t, x), for (t, x) ∈ (0,∞)× (0, ℓ),

u(0, x) = ϕ(x), for x ∈ R,
u(t, 0) = g(t), for t ∈ (0,∞),

u(t, ℓ) = h(t), for t ∈ (0,∞).

(2.42)

The maximum principle can be used to give a proof of uniqueness for the Dirichlet
problem (2.42).

Theorem 2.36. There is at most one solution of (2.42).

Proof. Let u1(t, x) and u2(t, x) be two solutions of (2.42). Let w(t, x) = u1(t, x)−
u2(t, x) be their difference. Then we have

∂tw − ∂2xw = 0, for (t, x) ∈ (0,∞)× (0, ℓ),

w(0, x) = 0, for x ∈ R,
w(t, 0) = 0, for t ∈ (0,∞),

w(t, ℓ) = 0, for t ∈ (0,∞).

Fix T > 0. By the maximum principle, we see that w(t, x) ≤ 0 on D̄T,ℓ and the
same for the minimum shows that w(t, x) ≥ 0 on D̄T,ℓ. Therefore, w(t, x) = 0 on
D̄T,ℓ which implies that w(t, x) = 0 on (0,∞)× (0, ℓ) (since the arbitrary choice of
T ). The proof of Theorem 2.36 is complete. □

Next, we introduce a second proof of uniqueness of problem (2.42) by the energy
method.

Proof of Theorem 2.36. Multiplying the equation for w = u1 − u2 by w itself, we
can get

0 = (∂tw − ∂2xw)w =
1

2
∂t(w

2)− ∂x(w∂xw) + (∂xw)
2.
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Integrating the above identity on the interval [0, ℓ], we have

1

2

d

dt

∫ ℓ

0

(w(t, x))2dx = −
∫ ℓ

0

(∂xw(t, x))
2dx ≤ 0.

Therefore the L2 norm of w is decreasing and so∫ ℓ

0

(w(t, x))2dx ≤
∫ ℓ

0

(w(0, x))2dx = 0 ⇒ w(t, x) = 0, for all (t, x) ∈ (0,∞)× R,

which means that u1(t, x) = u2(t, x) for all (t, x) ∈ (0,∞)× R. □

We finish this subsection by the stability of the (2.42) in two different senses.
Consider the following two Dirichlet problem

∂tu1 − ∂2xu1 = f(t, x), for (t, x) ∈ (0,∞)× (0, ℓ),

u1(0, x) = ϕ1(x), for x ∈ (0, ℓ),

u1(t, 0) = g(t), for t ∈ (0,∞),

u1(t, ℓ) = h(t), for t ∈ (0,∞),

(2.43)

as well as 
∂tu2 − ∂2xu2 = f(t, x), for (t, x) ∈ (0,∞)× (0, ℓ),

u2(0, x) = ϕ2(x), for x ∈ (0, ℓ),

u2(t, 0) = g(t), for t ∈ (0,∞),

u(t, ℓ) = h(t), for t ∈ (0,∞).

(2.44)

Note that, the above two problems with the same source term f , boundary con-
ditions g(t) and h(t), but with different initial data ϕ1 and ϕ2. Let w(t, x) =
u1(t, x)− u2(t, x). Using the energy argument as above for w, we have∫ ℓ

0

(w(t, x))2dx ≤
∫ ℓ

0

(w(0, x))
2
dx, for all t > 0,

which means that∫ ℓ

0

(u1(t, x)− u2(t, x))
2dx ≤

∫ ℓ

0

(ϕ1(x)− ϕ2(x))
2
dx, for all t > 0, (2.45)

The inequality (2.45) means the stability of (2.42) in the L2 norm sense. On the
other hand, using the maximum principle (both with minimum principle) for w, we
see that

sup
t≥0

max
x∈[0,ℓ]

|u1(t, x)− u2(t, x)| ≤ max
x∈[0,ℓ]

|ϕ1(x)− ϕ2(x)|. (2.46)

The inequality (2.46) means the stability of (2.42) in the uniform sense.

2.4. 1D Wave equation. Consider the 1D homogeneous wave equation

∂2t u− ∂2xu = 0, for (t, x) ∈ [0,∞)× U, (2.47)

and the 1D nonhomogeneous wave equation

∂2t u− ∂2xu = f, for (t, x) ∈ [0,∞)× U, (2.48)

where f is a regular function and U is R or half-line R+ or finite interval [0, L].
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2.4.1. The initial value problem on R. Our first purpose in this subsection is
to solve the problem{

∂2t u− ∂2xu = 0, for (t, x) ∈ (0,∞)× R,
(u, ∂tu)|t=0 = (u0, u1), for x ∈ R.

(2.49)

Note that the PDE in (2.49) can be factored to read

(∂t + ∂x)(∂tu− ∂xu) = 0.

We denote v(t, x) = ∂tu(t, x)− ∂xu(t, x) and so

∂tv(t, x) + ∂xv(t, x) = 0 for (t, x) ∈ R+ × R.

This is a transport equation with constant coefficients. Using the formula of the
solution for transport equation, we have

v(t, x) = a(x− t) and a(x) := v(0, x).

From the definition of v(t, x), we also have

∂tu(t, x)− ∂xu(t, x) = a(x− t), for (t, x) ∈ R+ × R.

Note that this is an inhomogeneous transport equation and so we have

u(t, x) =

∫ t

0

a(x+ (t− s)− s)ds+ b(x+ t)

=
1

2

∫ x+t

x−t

a(y)dy + b(x+ t) where b(x) := u(0, x) = u0(x).

Recall that,

a(x) = v(0, x) = ∂tu(0, x)− ∂xu(0, x) = u1(x)− ∂xu0(x), for x ∈ R.

Therefore, combining the above identities, we have

u(t, x) =
1

2
(u0(x+ t) + u0(x− t)) +

1

2

∫ x+t

x−t

u1(y)dy. (2.50)

This is d’Alembert’s formula. We have derived formula (2.50) assuming u is a
smooth solution of (2.49). We need to check that this really is a solution.

Theorem 2.37. Assume (u0, u1) ∈ C2(R) × C1(R), and define u by d’Alembert’s
formula (2.50). Then

(i) u ∈ C2(R+ × R),
(ii) ∂2t u− ∂2xu = 0 in R+ × R,
(iii) lim

(t,x)→(0,x0)
u(t, x) = u0(x0), lim

(t,x)→(0,x0)
∂tu(t, x) = u1(x0), for all x0 ∈ R.

Proof. The proof is a straightforward calculation, and we let it as an exercise. □

Remark 2.38. In view of (2.50), the solution u has the form

u(t, x) =
1

2

(
u0(t+ x) +

∫ x+t

0

u1(y)dy

)
+

1

2

(
u0(t− x) +

∫ 0

x−t

u1(y)dy

)
= F (t+ x) +G(t− x),

for appropriate functions F and G. Conversely any function of this form solves
∂2t u− ∂2xu = 0. Hence the general solution of the 1D wave equation is a sum of the
general solution of ∂tv − ∂xv = 0 and the general solution of ∂tv + ∂xv = 0.
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Our second purpose in this subsection is to solve the problem{
∂2t u− ∂2xu = f, for (t, x) ∈ (0,∞)× R,
(u, ∂tu)|t=0 = (u0, u1), for x ∈ R.

(2.51)

We claim that the solution of (2.51) is

u(t, x) =
1

2
(u0(x+ t) + u0(x− t)) +

1

2

∫ x+t

x−t

u1(y)dy

+
1

2

∫ t

0

∫ x+(t−s)

x−(t−s)

f(s, y)dyds.

(2.52)

Here, we need use again the Duhamel’s principle. Heuristically, we consider an
analogized second-order ODE

d2u

dt2
(t) + u(t) = f(t), u(0) = u0, ∂tu(0) = u1. (2.53)

The solution of (2.53) is

u(t) = S′(t)u0 + S(t)u1 +

∫ t

0

S(t− s)f(s)ds, where S(t) = cos t. (2.54)

The key to understanding formula (2.54) is that S(t)u1 is the solution of prob-
lem (2.53) in the case that u0 = f(t) = 0. Let us return to the PDE (2.51). The
basic solution operator should be given by the u1 term. That is

S(t)u1 =
1

2

∫ x+t

x−t

u1(y)dy, for (t, x) ∈ R+ × R.

Note that S(t)u1 solves ∂2t u − ∂2xu = 0, u(0, x) = 0 and ∂tu(0, x) = u1. S(t) is
the source operator or solution operator. By (2.54), we expect the u0 term to be
∂
∂tS(t)u0. In fact, we have

∂

∂t
S(t)u0 =

1

2

∂

∂t

∫ x+t

x−t

u0(y)dy =
1

2
(u0(x+ t) + u0(x− t)) .

Let us now take the source term f ; that is, u0 = u1 = 0. By analogy with the last
term in (2.31), the solution should be

u(t) =

∫ t

0

S(t− s)f(s)ds =

∫ t

0

∫ x+t

x−t

f(s, y)dyds,

which is the last term in (2.52). We need to check that (2.52) is a solution to (2.51).

Theorem 2.39. Assume (u0, u1, f) ∈ C2(R) × C1(R) × C1(R2), and define u
by (2.52). Then

(i) u ∈ C2(R+ × R),
(ii) ∂2t u− ∂2xu = f in R+ × R,
(iii) lim

(t,x)→(0,x0)
u(t, x) = u0(x0), lim

(t,x)→(0,x0)
∂tu(t, x) = u1(x0), for all x0 ∈ R.

Proof. The proof is based on a not easy calculation, and we let it as an exercise. □
2.4.2. The initial-boundary value problem on R+. In this subsection, we con-
sider the following initial-boundary value problem{

∂2t v(t, x) = ∂2xv(t, x), for (t, x) ∈ R+ × R+,

(v, ∂tv)|t=0 = (u0, u1), v(t, 0) = 0 for t ∈ R+.
(2.55)

The reflection method is carried out in the same way as in §2.3.2. Consider the
odd extension of both of the initial data to the whole line R, u0,odd and u1,odd.
Let u(t, x) be the solution of the initial value problem on R with the initial data
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u0,odd and u1,odd. Then, u(t, x) is once again an odd function of x and so we have
u(t, 0) = 0. Define v(t, x) = u(t, x) for (t, x) ∈ R+ × R+. Then v(t, x) is precisely
the solution we are looking for. From the formula (2.50), we have for x ≥ 0,

v(t, x) = u(t, x) =
1

2
[u0,odd(x+ t) + u0,odd(x− t)] +

1

2

∫ x+t

x−t

u1,odd(y)dy.

We split the spacetime region R+×R+ into two partsA = {(t, x) ∈ R+ × R+ : x > t > 0}
and B = {(t, x) ∈ R+ × R+ : t > x > 0}. First, we notice that, for any (t, x) ∈ A
only positive arguments occur in the formula, so that v(t, x) is given by the usual
formula:

v(t, x) =
1

2
(u0(x+ t) + u0(x− t)) +

1

2

∫ x+t

x−t

u1(y)dy, for (t, x) ∈ A.

Second, we notice that, for (t, x) ∈ B, we have u0,odd(x− t) = −u0(t− x), and so

v(t, x) =
1

2
(u0(t+ x)− u0(t− x))

+
1

2

∫ x+t

0

u1(y)dy +
1

2

∫ 0

x−t

(−u1(−y))dy

=
1

2
(u0(t+ x)− u0(t− x)) +

1

2

∫ t+x

t−x

u1(y)dy.

The complete solution is given

v(t, x) =


1

2
(u0(x+ t) + u0(x− t)) +

1

2

∫ x+t

x−t

u1(y)dy, for (t, x) ∈ A

1

2
(u0(t+ x)− u0(t− x)) +

1

2

∫ t+x

t−x

u1(y)dy, for (t, x) ∈ B.

(2.56)

Note that, our solution does not belong to C2, unless u′′0(0) = 0.

2.4.3. The initial value problem on R3. In this subsection, we consider the
following initial value problem for 3D wave equation,{

∂2t u−∆u = 0, (t, x) ∈ R+ × R,
(u, ∂tu)|t=0 = (u0, u1), x ∈ R.

(2.57)

We intend to derive an explicit formula for u in terms of u0 and u1. The plan
will be to study first the average of u over certain spheres. These averages, taken
as functions of the time t and the radius r, turn out to solve the so called Euler-
Poisson-Darboux equation, a PDE which we can convert into the 1D wave equation.
Applying d’Alembert’s formula (2.50), we could obtain a explicit formula for solu-
tion of Euler-Poisson-Darboux and then conclude the formula for solution of (2.57).

Definition 2.40. (i) Let x ∈ R3, t > 0 and r > 0. Define

U(t, x, r) := 1

4πr2

∫
∂Br(x)

u(t, y)dSy, (2.58)

the average of u(t, x) over the sphere ∂Br(x).
(ii) Similarly, 

U0(x, r) : =
1

4πr2

∫
∂Br(x)

u0(y)dSy,

U1(x, r) : =
1

4πr2

∫
∂Br(x)

u1(y)dSy.

(2.59)

For fixed x, we hereafter regard U as a function of (t, r) and discover a PDE that
U solves.
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Lemma 2.41 (Euler-Poisson-Darboux equation). Fix x ∈ R3 and let u ∈ C2(R+×
R3) satisfy (2.57). Then U ∈ C2(R+ × R+) and∂2t U − ∂2rU − 2

r
U = 0, for (t, x) ∈ R+ × R+,

(U , ∂tU)|t=0 = (U0,U1) , for x ∈ R.
(2.60)

Proof. The regularity of U and (U , ∂tU)|t=0 = (U0,U1) are consequence of (2.57).
Now we prove the Euler-Poisson-Darboux equation for U . First, we rewrite

U(t, x, r) = 1

4πr2

∫
∂Br(x)

u(t, y)dSy

=
1

4π

∫
∂B1(0)

u(t, x+ rz)dSz

Therefore, from (2.57), we have

∂rU(t, x, r) =
1

4π

∫
∂B1(0)

z · ∇xu(t, x+ rz)dSz

=
1

4πr2

∫
∂Br(x)

∇u(t, y) · y − x

r
dSy

=
1

4πr2

∫
Br(x)

∆u(t, y)dy =
1

4πr2

∫
Br(x)

∂2t u(t, y)dy,

which implies

∂r
(
r2∂rU

)
=

1

4π

∫
∂Br(x)

∂2t u(t, y)dSy = r2∂2t U .

From the above identity, we obtain the Euler-Poisson-Darboux equation for U . □
We introduce

Ũ = rU , Ũ0 = rU0, Ũ1 = rU1.

From Lemma 2.41, we see that
∂2t Ũ − ∂2r Ũ = 0, for (t, r) ∈ R+ × R+,

Ũ = Ũ0, ∂tŨ = Ũ1, for (t, r) ∈ {0} × R+,

Ũ = 0, for (t, r) ∈ R+ × {0} .

(2.61)

Then, using (2.56), we have

Ũ(t, x, r) = 1

2

(
Ũ0(t+ r)− Ũ0(t− r)

)
+

1

2

∫ t+r

t−r

Ũ1(ρ)dρ.

From the definition of U and Ũ , we see that

u(t, x) = lim
r→0+

(
r−1Ũ(t, x, r)

)
=

1

2
lim

r→0+

(
r−1

(
Ũ0(t+ r)− Ũ0(t− r)

)
+ r−1

∫ t+r

t−r

Ũ1(ρ)dρ

)
= Ũ ′

0(t) + Ũ1(t).

Based on a change of variable and elementary computation, we have

Ũ ′
0(t) =

1

4πt2

∫
∂Bt(x)

(u0(y) +∇u0(y) · (y − x)) dSy,

which implies

u(t, x) =
1

4πt2

∫
∂Bt(x)

(u0(y) +∇u0(y) · (y − x) + tu1(y)) dSy.

This is Kirchhoff’s formula for the solution of the initial-value problem (2.57).
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3. Boundary Problems

In this section, we will introduce the method of separation of variables. In mathe-
matics, separation of variables (also known as the Fourier method) is any of several
methods for solving ordinary and partial differential equations, in which algebra
allows one to rewrite an equation so that each of two variables occurs on a different
side of the equation.
In this section, the presentation is usually close to [4, Chapter 4].

3.1. Separation of variables, the Dirichlet condition. We first consider the
homogeneous Dirichlet conditions for the 1D homogeneous wave equation:{

∂2t u = ∂2xu, for (t, x) ∈ [0,∞)× (0, ℓ),

u(t, 0) = 0 = u(t, ℓ), for t ∈ [0,∞),
(3.1)

with some initial conditions
(u, ∂tu)|t=0 = (ϕ, ψ), for x ∈ (0, ℓ). (3.2)

The method we shall use consists of building up the general solution as a linear
combination of special ones that are easy to find. More specifically, a separated
solution is a solution of (3.1)- (3.2) of the form

u(t, x) = T (t)X(x), for (t, x) ∈ [0,∞)× (0, ℓ). (3.3)
Our goal is to look for as many separated solutions as possible.
Plugging the form (3.3) into the wave equation (3.1), we get

X(x)T ′′(t) = X ′′(x)T (t), for (t, x) ∈ [0,∞)× (0, ℓ),

and so, dividing by −XT , we find

− T ′′

T
= −X

′′

X
= λ, for (t, x) ∈ [0,∞)× (0, ℓ). (3.4)

This defines a quantity λ which must be a constant (Since we can argue that λ does
not depend on x because of the first expression and does not depend on t because
of the second expression, so that it does not depend on any variable).
Case I. Let λ > 0. We denote λ = β2 where β > 0. Then the equations (3.4) are a
pair of separate ODE for X and T :

X ′′ + βX = 0 and T ′′ + βT = 0. (3.5)
The solutions of (3.5) have the form

X(x) = C cosβx+D sinβx,

T (t) = A cosβt+B sinβt,
(3.6)

where A, B, C and D are constants.
The second step is to impose the boundary conditions (3.1) on the separated solu-
tion. They simply require that X(0) = X(ℓ) = 0. Thus

0 = X(0) = C and 0 = X(ℓ) = D sinβℓ.

Surely we are not interested in the obvious solution C = D = 0. So we must have
βℓ = nπ, a root of the sine function. That is,

λn =
(nπ
ℓ

)2
, Xn(x) = sin

nπx

ℓ
, for n ∈ N+,

are distinct solutions, Each sine function may be multiplied by an arbitrary con-
stant. Therefore, there are an infinite number of separated solutions of (3.1), one
for each n. They are

un(t, x) =

(
An cos

nπt

ℓ
+Bn sin

nπt

ℓ

)
sin

nπx

ℓ
, for n ∈ N+,
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where An and Bn are arbitrary constants. The sum of solutions is again a solution,
so any finite sum

u(t, x) =

N∑
n=1

(
An cos

nπt

ℓ
+Bn sin

nπt

ℓ

)
sin

nπx

ℓ
,

is also a solution of (3.1). The above formula solves (3.1)-(3.2), provided that

ϕ(x) =

N∑
n=1

An sin
nπx

ℓ
and ψ(x) =

N∑
n=1

nπ

ℓ
Bn sin

nπx

ℓ
. (3.7)

Thus for any initial data of this form, the problem (3.1)-(3.2) has a simple explicit
solution. But such initial data (3.7) clearly are very special. So let us try to take
infinite sums. Then we ask what kind of initial data paris (ϕ, ψ) can be expanded
as in (3.7) for some choice of coefficients An and Bn? This question was the source
of great disputes for half a century around 1800, but the final result of the disputes
was very simple: Practically any function ϕ on the interval (0, ℓ) can be expanded
in an infinite series (3.7). We will show this in Section 4.
Case II. Let λ = 0. This would mean that X ′′ = 0, so that X(x) = C +Dx. But
X(0) = X(ℓ) = 0 implies that C = D = 0, so that X(x) ≡ 0. Therefore, λ = 0 is
not an eigenvalue.
Case III. Let λ = −γ2 < 0. Then X ′′ = γ2X, so that X(x) = C cosh γx+D sinh γx.
Then 0 = X(0) = C and 0 = X(ℓ) = D sinh γℓ. Hence D = 0 since sinh γℓ 6= 0.
Therefore, λ < 0 is not an eigenvalue.
In conclusion, the only eigenvalues λ of our problem (3.4) are positive numbers; in
fact, they are

{(
nπ
ℓ

)2}
n∈N

.

The analogous problem for heat equation is
∂tu = ∂2xu, for (t, x) ∈ [0,∞)× (0, ℓ),

u(t, 0) = u(t, ℓ) = 0, for t ∈ [0,∞),

u(0, x) = ϕ(x), for x ∈ R.
(3.8)

To solve it, we separate the variables u = T (t)X(x) as before. This time we get
T ′

T
=
X ′′

X
= −λ = costant.

Therefore, T (t) satisfies the equation T ′ = −λT , whose solution is T (t) = Ae−λt.
Furthermore, we have

−X ′′ = λX in x ∈ (0, ℓ) with X(0) = X(ℓ) = 0.

This is precisely the same problem for X(x) as before and so has the same solutions.
Because of the form of T (t), we have

u(t, x) =

∞∑
n=1

Ane
−(nπ

ℓ )
2
t sin

nπx

ℓ
,

is the solution of (3.8) provided that

ϕ(x) =

∞∑
n=1

An sin
nπx

ℓ
.

Once again, our solution is expressible for each t as a Fourier sine series in x provided
that the initial data are.
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3.2. The Neumann condition. The same method works for both the Neumann
and Robin boundary conditions. In the former case, the second line of (3.1) is
replaced by ∂xu(t, 0) = ∂xu(t, ℓ) = 0. Then the eigenfunctions are the solutions
X(x) of

−X ′′ = λX, X ′(0) = X ′(ℓ) = 0, (3.9)
other than the trivial solution X(x) ≡ 0.
Case I: Let λ = β2 > 0. As in the previous subsection, we have

X(x) = C cosβx+D sinβx, for x ∈ (0, ℓ),

so that
X ′(x) = −Cβ sinβx+Dβ cosβx, for x ∈ (0, ℓ).

The boundary conditions (3.9) mean first that 0 = X ′(0) = Dβ, so that D = 0,
and second, that

0 = X ′(ℓ) = −Cβ sinβℓ.
Since we do not want C = 0, we must have sinβℓ = 0. Thus β = nπ

ℓ for n ∈ N+,
Therefore, we have

λn =
(nπ
ℓ

)2
and Xn(x) = cos

nπx

ℓ
, for n ∈ N+.

Case II. Let λ = 0. Then X ′′ = 0, so that X(x) = C +Dx and X ′(x) ≡ D. The
Neumann boundary conditions are both satisfied if D = 0. C can be any number.
Therefore, λ = 0 is an eigenvalue, and any constant function is its eigenfunctions.
Case III. Let λ < 0. It can be shown directly, as in the Dirichlet case, that there is
no eigenfunction.
In conclusion, the list of all the eigenvalues is

λn =
(nπ
ℓ

)
, for n ∈ N.

Note that n = 0 is include among them.
So, for instance, the 1D heat equation with the Neumann boundary conditions has
the solution

u(t, x) =
1

2
A0 +

∞∑
n=1

Ane
−(nπ

ℓ )
2
t cos

nπx

ℓ
.

This solution requires the initial data to have the ”Fourier cosine expansion”

ϕ(x) =
1

2
A0 +

∞∑
n=1

An cos
nπx

ℓ
.

All the coefficients {An}n∈N are just constants.
Consider now the 1D wave equation with the Neumann boundary conditions. The
eigenvalue λ = 0 then leads to X(x) = costant and to the differential equation
T ′′(t) = λT (t), which has the solution T (t) = A + Bt. Therefore, the 1D wave
equation with Neumann boundary conditions has the solutions

u(t, x) =
1

2
A0 +

1

2
B0t+

∞∑
n=1

(
An cos

nπt

ℓ
+Bn sin

nπt

ℓ

)
cos

nπx

ℓ
.

Then the initial data must satisfy

ϕ(x) =
1

2
A0 +

∞∑
n=1

An cos
nπx

ℓ
,

ψ(x) =
1

2
B0 +

∞∑
n=1

nπ

ℓ
Bn cos

nπx

ℓ
.
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For another example, consider the 1D Schrödinger equation ∂tu = i∂2xu in (0, ℓ) with
the Neumann boundary conditions ∂xu(t, 0) = ∂xu(t, ℓ) = 0 and initial condition
u(0, x) = ϕ(x). Separation of variables leads to the equation

T ′

iT
=
X ′′

X
= −λ = costant,

so that T (t) = e−iλt and X(x) satisfies exactly the same problem (3.9) as before.
Therefore, the solution is

u(t, x) =
1

2
A0 +

∞∑
n=1

Ane
−i(nπ

ℓ )
2
t cos

nπx

ℓ
.

3.3. The Robin condition. We continue the method of separation of variables
for the case of the Robin condition. The Robin condition means that we are solving
−X ′′ = λX with the boundary conditions

X ′ − a0X = 0, at x = 0,

X ′ + aℓX = 0, at x = ℓ.
(3.10)

The two constants a0 and aℓ should be considered as given.
Part I. Positive eigenvalues.
Our goal now is to solve the ODE −X ′′ = λX with the boundary conditions (3.10).
First, let us look for the positive eigenvalues λ = β2 > 0. As usual, the solution of
the ODE is

X(x) = C cosβx+D sinβx, for x ∈ (0, ℓ),

so that
X ′(x)± aX(x) = (βD ± aC) cosβx+ (−βC ± aD) sinβx.

Combing Robin boundary conditions with above identities, we obtain
0 = X ′(0)− a0X(0) = βD − a0C,

0 = (βD + aℓC) cosβℓ+ (−βC + aℓD) sinβℓ.

Therefore, substituting for D, we have

0 = (a0 + aℓ)C cosβℓ+

(
−βC +

a0aℓC

β

)
sinβℓ.

We do not want the trivial solution C ≡ 0. We divide by C cosβℓ and multiply by
β to get

(β2 − a0aℓ) tanβℓ = (a0 + aℓ)β. (3.11)
By the way, because we divided by cosβℓ, there is the exceptional case when
cosβℓ = 0; it would mean that β =

√
a0aℓ.

Our next goal is to solve (3.10) for β. This is not so easy, as there is no simple
formula. One way is to calculate the roots numerically, say by Newton’s method.
Another way is by graphical analysis, which, instead of precise numerical values,
will provide a lot of qualitative information. This is what we will do.
Let us rewrite the eigenvalue equation (3.11) as

tanβℓ =
(a0 + aℓβ)

β2 − a0aℓ
.

Our method is to sketch the graphs of the tangent function y = tanβℓ and the
rational function y = (a0+aℓ)β

β2−a0aℓ
as functions of β > 0 and to find their points of

intersection. What the rational function looks like depends on the constants a0
and aℓ.
Case I. In [4, Page 92, Figure 1] is pictured the case of radiation at both ends:
a0 > 0 and aℓ > 0. Each of the points of intersection (for β > 0) provides an
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eigenvalue λn = β2
n > 0. The results depend very much on the a0 and aℓ. The

exceptional situation mentioned above, when cosβℓ = 0 and β =
√
a0aℓ, will occur

when the graphs of the tangent function and the rational function ”intersect at
infinity”.
No matter what they are, as long as they are both positive, the graph clearly shows
that

n2
π2

ℓ2
< λn < (n+ 1)2

π2

ℓ2
, for n ∈ N. (3.12)

Furthermore, we have
lim
n→∞

(
βn − n

π

ℓ

)
= 0, (3.13)

which means that the larger eigenvalues get closer and closer to n2π2

ℓ2 .
Case II. The case of absorption at x = 0 and radiation at x = ℓ, but more radiation
than absorption, is given by the conditions

a0 < 0, aℓ > 0, a0 + aℓ > 0. (3.14)

Then the graph look like [4, Page 93, Figure 2 and Figure 3], depending on the
relative sizes of a0 and aℓ. Once again we see that (3.12) and (3.13) hold, except
that in [4, Page 93, Figure 2] there is no eigenvalue λ0 in the interval (0, π2

ℓ2 ).
There is an eigenvalue in the interval (0, π

2

ℓ2 ) only if the rational curve crosses
the first branch of the tangent curve. Since the rational curve has only a single
maximum, this crossing can happen only if the slope of the rational curve is greater
than the slope of the tangent curve at the origin. Let us calculate these two slopes.
A direct calculation shows that the slope dy

dβ of the rational curve at the origin is

a0 + aℓ
−a0aℓ

=
aℓ − |a0|
aℓ|a0|

> 0

because of (3.14). On the other hand, the slope of the tangent curve y = tanβℓ at
the origin is ℓ sec2(0) = ℓ. Thus we reach the following conclusion. In case

a0 + aℓ > −a0aℓℓ, (3.15)

the rational curve will start out at the origin with a greater slope than the tangent
curve and the two graphs must intersect at a point in the interval

(
0, π

2ℓ

)
. Therefore,

we conclude that in Case 2 there is an eigenvalue 0 < λ0 <
(
π
2ℓ

)
if and only if (3.15)

holds.
Part II. Zero Eigenvalue. By an elementary computation, we deduce that there
is a zero eigenvalue if and only if

a0 + aℓ = −a0aℓℓ. (3.16)

Notice that (3.16) can happen only if a0 and aℓ have opposite signs and the interval
has exactly a certain length.
Part III. Negative Eigenvalue. Now let us investigate the possibility of a neg-
ative eigenvalue. To avoid dealing with imaginary numbers, we set

λ = −γ2 < 0

and write the solution of the differential equation as

X(x) = C cosh γx+D sinh γx, for x ∈ (0, ℓ).

The boundary conditions, much as before, lead to the eigenvalue equation

tanh γℓ = − (a0 + aℓ)γ

γ2 + a0aℓ
.
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So we look for intersections of these two graphs for γ > 0. Any such point of
intersection would provide a negative eigenvalue λ = −γ2 and a corresponding
eigenfunction

X(x) = cosh γx+
a0
γ

sinh γx.

Several different cases are illustrated in [4, Page 95, Figure 4]. Thus in Case I, of
radiation at both ends, when a0 and aℓ are both positive, there is no intersection
and so no negative eigenvalue.
Case II, the situation with more radiation than absorption (a0 < 0, aℓ > 0, a0+aℓ >
0), is illustrated by the two solid and dashed curves in [4, Page 95, Figure 4]. There
is either one intersection or none, depending on the slopes at the origin. The slope
of the tanh curve is ℓ, while the slope of the rational curve is −(a0+aℓ)/(a0aℓ) > 0.
If the last expression is smaller than ℓ, there is an intersection; otherwise, there is
not. So our conclusion in Case II is as follows.
Let a0 < 0 and aℓ > −a0. If

a0 + aℓ < −a0aℓℓ, (3.17)

then there exists exactly one negative eigenvalue, which we will call λ0 < 0. If (3.15)
holds, then there is no negative eigenvalue. Notice how the ”missing” positive
eigenvalue λ0 in the case (3.17) now makes its appearance as a negative eigenvalue.
Furthermore, the zero eigenvalue is the borderline case (3.16); therefore. we use
the notation λ0 = 0 in the case of (3.16).
Summary. We summarize the various cases as follows:

(i) Case I: only positive eigenvalues.
(ii) Case II with (3.15): only positive eigenvalues.
(iii) Case II with (3.16): Zero is an eigenvalue, all the rest are positive.
(iv) Case II with (3.17): One negative eigenvalue, all the rest are positive.

4. Fourier Series

In this section, we introduce the basic content of Fourier series. A Fourier series
is a sum that represents a periodic function as a sum of sine and cosine waves.
The frequency of each wave in the sum, or harmonic, is an integer multiple of the
periodic function’s fundamental frequency. Each harmonic phase and amplitude can
be determined using harmonic analysis. A Fourier series may potentially contain
an infinite number of harmonics.
In this section, the presentation is close to [3, Chapter 1-3] and [4, Chapter 4].

4.1. The Coefficients. Consider the Fourier sine series

ϕ(x) =

∞∑
n=1

An sin
nπx

ℓ
, (4.1)

in the interval (0, ℓ). The first problem we tackle is to try to find the coefficients
An if ϕ(x) is given function. The key observation is that the sine functions have
the following wonderful property.

Lemma 4.1. For all m,n ∈ N with m 6= n, we have∫ ℓ

0

sin
nπx

ℓ
sin

mπx

ℓ
dx = 0. (4.2)

Proof. We use the trig identity,

sin a sin b =
1

2
cos(a− b)− 1

2
cos(a+ b).
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Therefore, the integral equals

ℓ

2(m− n)π
sin

(m− n)πx

ℓ

∣∣∣∣ℓ
0

− [same with (m+ n)] ,

if m 6= n. This is a linear combination of sin(m± n)π and sin 0, and so it vanishes.
□

Let us fix m, multiply (4.1) by sin(mπx/ℓ) and integrate the series (4.1) term by
term to get ∫ ℓ

0

ϕ(x) sin
mπx

ℓ
dx =

∫ ℓ

0

∞∑
n=1

An sin
nπx

ℓ
sin

mπx

ℓ
dx

=

∞∑
n=1

An

∫ ℓ

0

sin
nπx

ℓ
sin

mπx

ℓ
dx.

All but one term in this sum vanishes, namely the one with n = m. Therefore, we
are left with the single term

Am

∫ ℓ

0

sin2
mπx

ℓ
dx,

which equals 1
2ℓAm by explicit integration. Therefore,

Am =
2

ℓ

∫ ℓ

0

ϕ(x) sin
mπx

ℓ
dx. (4.3)

This is the famous formula for the Fourier coefficients in the series (4.1). That is,
if ϕ(x) has an expansion (4.1), then the coefficients must be given by (4.3).
These are the only possible coefficients in (4.1). However, the basic question still
remains whether (4.1) is in fact valid with these values of the coefficients. This is
a question of convergence, and we postpone it until Section 4.4.

4.1.1. Application to the 1D Heat and Wave equation. Going back to the
1D heat equation with Dirichlet boundary conditions, the formula (4.3) provides
the final ingredient in the solution formula for arbitrary initial data ϕ(x).
As for the wave equation with Dirichlet conditions, the initial data consist of a pair
of functions (ϕ(x), ψ(x)). The coefficients Am are given by (4.3), while for the same
reason the coefficients Bm are given by the similar formula

mπ

ℓ
Bm =

2

ℓ

∫ ℓ

0

ψ(x) sin
mπx

ℓ
dx.

4.1.2. Fourier cosine series. Next let us take the case of the cosine series, which
corresponds to the Neumann boundary conditions on (0, ℓ). We write it as

ϕ(x) =
1

2
A0 +

∞∑
n=1

An cos
nπx

ℓ
.

Again we can verify the magical fact that∫ ℓ

0

cos
nπx

ℓ
cos

mπx

ℓ
dx = 0, if m 6= n,

where m and n are nonnegative integers. By exactly the same method as above,
but with sines replaced by cosines, we get∫ ℓ

0

ϕ(x) cos
mπx

ℓ
dx = Am

∫ ℓ

0

cos2
mπx

ℓ
dx =

1

2
ℓAm,
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if m 6= 0. For the case m = 0, we have∫ ℓ

0

ϕ(x) · 1dx =
1

2
A0

∫ ℓ

0

1dx =
1

2
ℓA0.

Therefore, for all nonnegative integers m, we have the formula for the coefficients
of the cosine series

Am =
2

ℓ

∫ ℓ

0

ϕ(x) cos
mπx

ℓ
dx. (4.4)

4.1.3. Full Fourier series. The full Fourier series, or simply the Fourier series, of
ϕ(x) on the interval (−ℓ, ℓ), is defined as

ϕ(x) =
1

2
A0 +

∞∑
n=1

(
An cos

nπx

ℓ
+Bn sin

nπx

ℓ

)
.

The interval is twice as long and the eigenfunctions now are all the functions
{1, cos(nπx/ℓ), sin(nπx/ℓ)}, where n = 1, 2, 3, . . . . Again we have the same wonder-
ful coincidence: Multiply any two different eigenfunctions and integrate over the
interval and you will get 0. That is,∫ ℓ

−ℓ

cos
nπx

ℓ
sin

mπx

ℓ
dx = 0, for all n,m ∈ N+,∫ ℓ

−ℓ

cos
nπx

ℓ
cos

mπx

ℓ
dx = 0, for all n 6= m,∫ ℓ

−ℓ

sin
nπx

ℓ
sin

mπx

ℓ
dx = 0, for all n 6= m,

and ∫ ℓ

−ℓ

1 · cos nπx
ℓ

dx =

∫ ℓ

−ℓ

1 · sin nπx
ℓ

dx = 0.

Therefore, the same procedure will work to find the coefficients. We also calculate
the integrals of the squares∫ ℓ

−ℓ

cos2
nπx

ℓ
dx =

∫ ℓ

−ℓ

sin2
nπx

ℓ
dx = ℓ,

∫ ℓ

−ℓ

1dx = 2ℓ.

Then we end up with the formulas

An =
1

ℓ

∫ ℓ

−ℓ

ϕ(x) cos
nπx

ℓ
dx, for n ∈ N+,

Bn =
1

ℓ

∫ ℓ

−ℓ

ϕ(x) sin
nπx

ℓ
dx, for n ∈ N+,

for the coefficients of the full Fourier series. Note that these formulas are not exactly
the same as (4.3) and (4.4).

Example 4.2. (i) Let ϕ(x) ≡ x in the interval (0, ℓ). Its Fourier series has the
coefficients

Am =
2

ℓ

∫ ℓ

0

x sin
mπx

ℓ
dx

− 2x

mπ
cos

mπx

ℓ
+

2ℓ

m2π2
sin

mπx

ℓ

∣∣∣∣ℓ
0

= − 2ℓ

mπ
cosmπ +

2ℓ

m2π2
sinmπ = (−1)m+1 2ℓ

mπ
.
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Thus in (0, ℓ), we have

x =
2ℓ

π

(
sin

πx

ℓ
− 1

2
sin

2πx

ℓ
+

1

3
sin

3πx

ℓ
− · · ·

)
.

(ii) Solve the problem
∂2t u = ∂2xu

u(t, 0) = u(t, ℓ) = 0,

u(0, x) = x, ∂tu(0, x) = 0.

From the previous section, we know that u(t, x) has an expansion,

u(t, x) =

∞∑
n=1

(
An cos

nπt

ℓ
+Bn sin

nπt

ℓ

)
sin

nπx

ℓ
.

Differentiating with respect to time yields

∂tu(t, x) =

∞∑
n=1

nπ

ℓ

(
−An sin

nπt

ℓ
+Bn cos

nπt

ℓ

)
sin

nπx

ℓ
.

Setting t = 0, we have

0 =

∞∑
n=1

nπ

ℓ
Bn sin

nπx

ℓ
,

so that all the Bn = 0. Setting t = 0 in the expansion of u(t, x), we have

x =

∞∑
n=1

An sin
nπx

ℓ
.

This is exactly the series of Example 4.2 (i). Therefore, the complete solution is

u(t, x) =
2ℓ

π

∞∑
n=1

(−1)n+1

n
sin

nπx

ℓ
cos

nπt

ℓ
.

4.2. Even, Odd, Periodic, and Complex Functions. Each of the three kinds
of Fourier series (sine, cosine and full) of any given function ϕ(x) is now determined
by the formula for its coefficients given in §4.1. We shall see shortly that almost
any function ϕ(x) define on the interval (0, ℓ) is the sum of its Fourier sine series
and is also the sum of its Fourier cosine series. Almost any function defined on the
interval (−ℓ, ℓ) is the sum of its full Fourier series. Each of these series converges
inside the interval, but not necessarily at the endpoints.
A function ϕ(x) that is defined for x ∈ R is called periodic if there is a number
p > 0 such that

ϕ(x+ p) = ϕ(x), for all x ∈ R.
The smallest number p for which this is true is called the period of ϕ(x). The graph
of the function repeats forever horizontally. Note that if ϕ(x) has period p, then
ϕ(x+np) = ϕ(x) for all x and for all integers n. The sum of two functions of period
p has period p. Notice that if ϕ(x) has period p, then

∫ a+p

a
ϕ(x)dx does not depend

on a.
If a function is defined only on an interval of length p, it can be extended in only
one way to a function of period p. The situation we care about for Fourier series is
that of a function defined on the interval (−ℓ, ℓ). Its periodic extension is

ϕper(x) = ϕ(x− 2ℓm), for x ∈ (−ℓ+ 2ℓm, ℓ+ 2ℓm).

This definition does not specify what the periodic extension is at the endpoints
x = ℓ+ 2ℓm. In fact, the extension has jumps at these points unless the one-sided
limits are equal: ϕ(ℓ−) = ϕ(ℓ+).
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An even function is a function that satisfies the equation
ϕ(−x) = ϕ(x). (4.5)

That just means that its graph y = ϕ(x) is symmetric with respect the y axis. Thus
the left and right halves of the graph are mirror images of each other. To make
sense out of (4.5), we require that ϕ(x) be defined on some interval (−ℓ, ℓ) which
is symmetric around x = 0.
An odd function is a function that satisfies the equation

ϕ(−x) = −ϕ(x). (4.6)
That just means that its graph y = ϕ(x) is symmetric with respect the origin. To
make sense out of (4.6), we again require that ϕ(x) be defined on some interval
(−ℓ, ℓ) which is symmetric around x = 0.
It is worth mentioning here that the sum of an even and an odd function can be
anything.

Lemma 4.3. Any function can be written as the sum of an even function and an
odd function.

Proof. Let f(x) be any function at all defined on (−ℓ, ℓ). Let ϕ(x) = 1
2 [f(x) + f(−x)]

and ψ(x) = 1
2 [f(x)− f(−x)]. Then we easily check that f(x) = ϕ(x) + ψ(x), that

ϕ(x) is even and that ψ(x) is odd. The functions ϕ(x) and ψ(x) are called the even
and odd parts of f , respectively. □
Given any function defined on the interval (0, ℓ), it can be extended in only one
way to be even or odd. The even extension of ϕ(x) is defined as

ϕeven(x) =

{
ϕ(x) for 0 < x < ℓ,

ϕ(−x) for − ℓ < x < 0.

This is just the mirror image. The even extension is not necessarily defined at the
origin.
Its odd extension is

ϕeven(x) =


ϕ(x) for 0 < x < ℓ,

− ϕ(−x) for − ℓ < x < 0,

0, for x = 0.

This is its image through the origin.

4.2.1. Fourier series and Boundary conditions. Now let us return to the
Fourier sine series. Each of its terms, sin(nπx/ℓ), is an odd function. There-
fore, its sum (if it converges) also has to be odd. Furthermore, each of its terms
has period 2ℓ, so that the same has to be true of its sum. Therefore, the Fourier
sine series can be regarded as an expansion of an arbitrary function that is odd and
has period 2ℓ defined on the whole line R.
Similarly, since all the cosine functions are even, the Fourier cosine series can be
regarded as an expansion of an arbitrary function which is even and has period 2ℓ
defined on the whole line R.
From what we saw in §4.1, these concepts therefore have the following relationship
to boundary conditions:

(i) u(t, 0) = u(t, ℓ) = 0: Dirichlet Boundary conditions correspond to the odd
extension.

(ii) ∂xu(t, 0) = ∂xu(t, ℓ) = 0: Neumann Boundary conditions correspond to the
even extension.

(iii) u(t, ℓ) = u(t,−ℓ), ∂xu(t, ℓ) = ∂xu(t,−ℓ): Periodic Boundary conditions
correspond to the periodic extension.
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4.2.2. The complex form of the full Fourier series. The eigenfunctions of
− d2

dx2 on (−ℓ, ℓ) with the periodic boundary conditions are sin(nπx/ℓ) and cos(nπx/ℓ).
But recall the DeMoivre formulas, which express the sine and cosine in terms of
the complex exponentials:

sin θ =
eiθ − e−iθ

2i
and cos θ =

eiθ + e−iθ

2
.

Therefore, instead of sine and cosine, we could use
{
einπx/ℓ

}
n∈Z as an alternative

pair.
We should therefore be able to write the full Fourier series in the complex form

ϕ(x) =

∞∑
n=−∞

cne
inπx/ℓ.

This is the sum of two infinite series, one going from n = 0 to +∞ and one going
from n = −1 to −∞. Note that, for m 6= n, we have∫ ℓ

−ℓ

eimπx/ℓe−inπx/ℓdx =

∫ ℓ

−ℓ

ei(m−n)πx/ℓ = 0.

When m = n, we have ∫ ℓ

−ℓ

ei(m−n)πx/ℓdx =

∫ ℓ

−ℓ

1dx = 2ℓ.

It follows by the method of §4.1 that the coefficients are given by the formula

cn =
1

2ℓ

∫ ℓ

−ℓ

ϕ(x)e−inπx/ℓdx.

4.3. Orthogonality and General Fourier series. For f(x), g(x) ∈ C ([a, b] : R),
we define their inner product to be the integral of their product:

(f, g) =

∫ b

a

f(x)g(x)dx.

We will call f(x) and g(x) orthogonal if (f, g) = 0. Notice that no function is
orthogonal to itself except f(x) ≡ 0. The key observation in each case discussed in
§4.1 is that every eigenfunctions is orthogonal to every other eigenfunction. Now
we will explain why this fortuitous coincidence is in fact no accident.
Consider the operator A = − d2

dx2 with some boundary conditions. Let X1(x) and
X2(x) be two different eigenfunctions. Thus

−X ′′
1 = λ1X1 and −X ′′

2 = λ2X2, (4.7)
where both functions satisfy the boundary conditions. Let us assume that λ1 6= λ2.
We now verify the identity

−X ′′
1X2 +X1X

′′
2 = (−X ′

1X2 +X1X
′
2)

′
.

Integrating the above identity on [a, b], we obtain∫ b

a

(−X ′′
1X2 +X1X

′′
2 ) dx = (−X ′

1X2 +X1X
′
2)|

b
a . (4.8)

On the left-hand side of (4.8), we now use the differential equation (4.7). On the
right-hand side, we use the boundary conditions to reach the following conclusions:

(i) Dirichlet. This means that both functions vanish at both ends: X1(a) =
X1(b) = X2(a) = X2(b) = 0. So the right-hand side of (4.8) is 0.

(ii) Neumann. The first derivatives vanish at both ends. It is once again 0.
(iii) Periodic. Xj(a) = Xj(b), X ′

j(a) = X ′
j(b) for j = 1, 2, and so we have 0.

(iv) Robin. By a similar argument, we also get 0.
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Thus in all four cases, (4.8) reduces to

(λ1 − λ2)

∫ b

a

X1X2dx = 0,

which means that X1 and X2 are orthogonal at least for λ1 6= λ2.

4.3.1. Symmetric Boundary conditions. So now let us consider any pair of
boundary conditions

λ1X(a) + β1X(b) + γ1X
′(a) + δ1X

′(b) = 0,

λ2X(a) + β2X(b) + γ2X
′(a) + δ2X

′(b) = 0,
(4.9)

involving eight real constants. Such a set of boundary conditions is called symmetric
if

f ′(x)g(x)− f(x)g′(x)|ba = 0,

for any pair of functions f(x) and g(x) both of which satisfy the pair of bound-
ary conditions (4.9). As we indicated above, each of the four standard boundary
conditions is symmetric. The identity (4.8) then implies the following theorem.

Theorem 4.4. If you have symmetric boundary conditions, then any two eigen-
functions that correspond to distinct eigenvalues are orthogonal. Therefore, if any
function is expanded in a series of these eigenfunctions, the coefficients are deter-
mined.

Proof. Take two different eigenfunctions X1(x) and X2(x) with λ1 6= λ2. We write
the identity (4.8). Because the boundary conditions are symmetric, the right-hand
side of (4.8) vanishes which implies the orthogonality.
If Xn(x) now denotes the eigenfunction with eigenvalue λn and if

ϕ(x) =
∑
n

AnXn(x),

is a convergent series, where the An are constants, then

(ϕ,Xm) =

(∑
n

AnXn(x), Xm

)
=
∑
n

An (Xn, Xm) = Am (Xm, Xm) ,

by the orthogonality. So if we denote cm = (Xm, Xm), we have
Am = c−1

m (ϕ,Xm) ,

as the formula for the coefficients. □

Two words of caution. First, we have so far avoided all questions of convergence.
Second, if there are two eigenfunctions, say X1(x) and X2(x), but their eigenvalues
are the same λ1 = λ2, then they do not have to be orthogonal. But if they are not
orthogonal, they can be made so by the Gram-Schmidt orthogonalization procedure.

4.3.2. Complex Eigenvalues. Let f(x) and g(x) be two complex-valued func-
tions, we define the inner product on (a, b) as

(f, g) =

∫ b

a

f(x)ḡ(x)dx.

The bar denotes the complex conjugate. The two functions are called orthogonal if
(f, g) = 0.
Now suppose that you have the boundary conditions (4.9) with eight real constants.
They are called symmetric if

(f ′(x)ḡ(x)− f(x)ḡ′(x))|ba = 0,
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for all f , g satisfying the boundary conditions. Then Theorem 4.4 is also true
for complex functions without any change at all. But we also have the following
important fact.
Theorem 4.5. Under the same conditions as Theorem 4.4, all the eigenvalues are
real. Furthermore, all the eigenfunctions can be chosen to be real valued.
Proof. Let λ ∈ C be an eigenvalue. Let X(x) : [a, b] → C be its eigenfunctions.
Then we have −X ′′ = λX plus the boundary conditions. Take the complex conju-
gate of this equation; thus −X̄ ′′ = λ̄X̄ plus the boundary conditions. So λ̄ is also
an eigenvalue. Using again (4.8), we have∫ b

a

(
−X ′′X̄ +XX̄ ′′)dx =

(
−X ′X̄ +XX̄ ′)∣∣b

a
= 0,

since the boundary conditions are symmetric. So we have(
λ− λ̄

) ∫ b

a

XX̄dx =
(
λ− λ̄

) ∫ b

a

|X|2dx = 0.

Based on the above identity, we have λ− λ̄ = 0 which implies λ ∈ R.
Next, let us consider again the same eigenvalue problem −X ′′ = λX together
with (4.9), knowing that λ is real. If X is complex, we write it as X(x) = Y (x) +
iZ(x), where Y (x) and Z(x) are real. Then we have −Y ′′ − iZ ′′ = λY + iλZ.
Equating the real and imaginary parts, we see that

−Y ′′ = λY and − Z ′′ = λZ.

The boundary conditions still hold for both Y and Z because the eight constants
in (4.9) are real numbers. So the real eigenvalue λ has the real eigenfunctions Y
and Z. We could therefore say that X and X̄ are replaceable by the Y and Z.
The linear combinations aX+ bX̄ are the same as the linear combinations cY +dZ
where a, b, c, d ∈ C. The proof of Theorem 4.5 is complete. □
4.3.3. Negative Eigenvalues. We have seen that most of the eigenvalues turn
out to be positive. An important question is whether all of them are positive. Here
is a sufficient condition.
Theorem 4.6. Assume the same conditions as in Theorem 4.4. If

f(x)f ′(x)|x=b
x=a ≤ 0, (4.10)

for all real-valued functions f(x) satisfying the boundary conditions, then there is
no negative eigenvalue.
Proof. Let λ ∈ R be an eigenvalue and f(x) be its eigenfunction:

−X ′′ = λX ⇒ −(XX ′)′ + (X ′)2 = λX2.

Integrating the above identity and using (4.10), we have

λ

∫ b

a

(X)2dx = − (XX ′)|ba +
∫ b

a

(X)2dx ≥ 0,

which implies λ ≥ 0. □
4.4. Completeness. In this section, we state the basic Theorem about the con-
vergence of Fourier series. We discuss three senses of convergence of functions. The
basic Theorems state sufficient conditions on a function f(x) that its Fourier series
converge to it in these three senses.
Consider the eigenvalue problem

−X ′′ = λX in (a, b) with any symmetric boundary conditions. (4.11)
By Theorem 4.5, we know that all the eigenvalues λ are real.
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Theorem 4.7. There are an infinite number of eigenvalues. They form a sequence
λn → ∞.

For a proof of Theorem 4.7, we refer to [4, Chapter 11]. We may assume that the
eigenvalues series {λn}∞n=1 is increasing and the eigenfunctions Xn(x) are pairwise
orthogonal and real valued.
For any function f(x) on (a, b), its Fourier coefficients are defined as

An =
(f,Xn)

(Xn, Xn)
=

∫ b

a
f(x)Xn(x)dx∫ b

a
|Xn(x)|2dx

.

Its Fourier series is the series
∑

nAnXn(x).
In this section, we present three convergence theorem. To set the stage, we need to
introduce various notions of convergence.

4.4.1. Three notions of convergence.

Definition 4.8. We say that an infinite series
∞∑

n=1
fn(x) converges to f(x) pointwise

in (a, b) if it converges to f(x) for each x ∈ (a, b). That is, for each x ∈ (a, b), we
have

lim
N→∞

∣∣∣∣f(x)− N∑
n=1

fn(x)

∣∣∣∣ = 0.

Definition 4.9. We say that an infinite series
∞∑

n=1
fn(x) converges uniformly to

f(x) in [a, b] if

lim
N→∞

max
x∈[a,b]

∣∣∣∣f(x)− N∑
n=1

fn(x)

∣∣∣∣ = 0.

That is, you take the biggest difference over all the x’s and then take the limit. A
third important concept is the following one.

Definition 4.10. We say the series converges in the mean-square sense to f(x) in
(a, b) if

lim
N→∞

∫ b

a

∣∣∣∣f(x)− N∑
n=1

fn(x)

∣∣∣∣dx = 0.

Notice that uniform convergence is stronger than both pointwise and L2 conver-
gence.

Example 4.11. (i) Let fn(x) = (1 − x)xn−1 on the interval x ∈ (0, 1). By an
elementary computation,

N∑
n=1

fn(x) = 1− xN → 1, as N → ∞.

This convergence is valid for each x ∈ (0, 1). Thus
∞∑

n=1
fn(x) = 1 pointwise which

means that the series converges pointwise to the function f(x) ≡ 1.
But the convergence is not uniform because sup

x∈(0,1)

[
1− (1− xN )

]
= 1 for every N .

However, it does converge in mean-square since∫ 1

0

x2Ndx =
1

2N + 1
→ 0.
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(ii) Let

fn(x) =
n

1 + n2x2
− n− 1

1 + (n− 1)2x2
, in the interval (0, ℓ).

This series also telescopes so that
N∑

n=1

fn(x) =
N

1 +N2x2
=

1

N [(1/N)2 + x2]
→ 0, as N → ∞.

So the series converges pointwise to the sum f(x) ≡ 0.
On the other hand,∫ ℓ

0

[
N∑

n=1

fn(x)

]2
dx =

∫ ℓ

0

N2

(1 +N2x2)2
dx

= N

∫ Nℓ

0

1

(1 + y2)2
dy → ∞, as N → ∞.

So the series does not converge in the mean-square sense. Also, it does not converge
uniformly because

max
x∈[0,ℓ]

N

1 +N2x2
= N,

which obviously does not tend to zero as N → ∞.
4.4.2. Convergence Theorems. Now let f(x) be any function defined on x ∈
[a, b]. Consider the Fourier series for the problem (4.11) with any given boundary
conditions that are symmetric. We now state a convergence theorem for each of
the three modes of convergence. They are partly proved in the next section.
Theorem 4.12 (Uniform Convergence). The Fourier series

∑
AnXn(x) converges

to f(x) uniformly on [a, b] provided that
(i) f(x) and f ′(x) exist and are continuous for x ∈ [a, b],
(ii) f(x) satisfies the given boundary conditions.

Theorem 4.12 assures us of a very good kind of convergence provided that the
conditions on f(x) and its derivatives are met.
Theorem 4.13 (L2 convergence). The Fourier series converges to f(x) in the
mean-square sense in (a, b) provided only that f(x) is a continuous function.
Theorem 4.14. (Pointwise Convergence of Classical Fourier Series).

(i) The classical Fourier series (sine or cosine or full) converges to f(x) point-
wise on (a, b), provided that f(x) is a continuous function on [a, b] and
f ′(x) is piecewise continuous on [a, b].

(ii) More generally, if f(x) itself is only piecewise continuous on [a, b] and
f ′(x) is also piecewise continuous on [a, b], then the classical Fourier series
converges at every point x. The sum is∑

n

AnXn(x) =
1

2
(f(x+) + f(x−)) , for all x ∈ (a, b).

4.4.3. The L2 theory. We have already defined the inner product on (a, b) as

(f, g) =

∫ b

a

f(x)ḡ(x)dx.

We now define the L2 norm of f as

‖f‖ = (f, f, )
1
2 =

(∫ b

a

|f(x)|2dx

) 1
2

.
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The quantity

‖f − g‖ =

(∫ b

a

|f(x)− g(x)|2dx

) 1
2

,

is a measurement of the distance between two functions f and g. It is some times
called the L2 metric.
Theorem 4.13 can be restated as follows. If {Xn} are the eigenfunctions associated
with a set of symmetric boundary conditions and if ‖f‖ <∞, then∥∥∥∥∥f −

N∑
n=1

AnXn

∥∥∥∥∥→ 0, as N → ∞.

Lemma 4.15 (Best Approximation). Let {Xn} be any orthogonal set of functions
and ‖f‖ < ∞. Let N be a fixed positive integer. Among all possible choices of N
constants {cn}Nn=1, the choice that minimizes∥∥∥∥∥f −

N∑
n=1

cnXn

∥∥∥∥∥
is c1 = A1, · · · , cN = AN .

Proof. For the sake of simplicity, we assume in this proof that f(x) and all the
Xn(x) are real valued. Denote the error by

EN =

∥∥∥∥∥f −
N∑

n=1

cnXn

∥∥∥∥∥
2

=

∫ b

a

∣∣∣∣f(x)− N∑
n=1

cnXn(x)

∣∣∣∣2dx.
Expanding the square, we have

EN =

∫ b

a

|f(x)|2dx− 2

N∑
n=1

cn

∫ b

a

f(x)Xn(x)dx

+

N∑
n=1

N∑
m=1

cncm

∫ b

a

Xn(x)Xm(x)dx.

Because of orthogonality, the last integral vanished except for n = m, and so

EN = ‖f‖2 − 2

N∑
n=1

cn(f,Xn) +

N∑
n=1

c2n‖Xn‖2

=

N∑
n=1

‖Xn‖2
(
cn − (f,Xn)

‖Xn‖2

)2

+ ‖f‖2 −
N∑

n=1

(f,Xn)
2

‖Xn‖2
.

Now the coefficients cn appear in only one place, inside the squared term. The
expression is clearly smallest if the squared term vanished. That is,

cn =
(f,Xn)

‖Xn‖2
= An.

□

Note that, from EN ≥ 0, we also have

0 ≤ EN ≤ ‖f‖2 −
N∑

n=1

A2
n‖Xn‖2, (4.12)

which implies
∞∑

n=1

A2
n

∫ b

a

|Xn(x)|2dx ≤
∫ b

a

|f(x)|2dx.
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This is known as Bessel’s inequality. It is valid as long as the integral of |f |2 is
finite.

Theorem 4.16. The Fourier series of f(x) converges to f(x) in the mean-square
sense if and only if

∞∑
n=1

A2
n

∫ b

a

|Xn|2dx =

∫ b

a

|f(x)|2dx. (4.13)

Proof. Mean-square convergence means that the remainder term EN → 0 as N →
∞. But from (4.12) this means that

lim
N→∞

N∑
n=1

A2
n‖Xn‖2 = ‖f‖2,

which in turn means (4.13), known as Parseval’s equality. □

Definition 4.17. The infinite orthogonal set of functions {Xn}∞n=1 is called com-
plete if Parseval’s equality (4.12) is true for all f with

∫ b

a
|f(x)|2dx <∞.

Last, we give the proof that the L2 convergence of full Fourier series using the
best approximation Lemma, as well as the important fact that trigonometric poly-
nomials are dense in the space of continuous functions on [−π, π]. Moreover, we
conclude that the full Fourier basic

{
einx

}
n∈Z

or {1, sinnx, cosnx}n∈N+ is complete
on [−π, π].

Proof of Theorem 4.13. Without loss of generality, we suppose that f(x) is contin-
uous on [−π, π]. Then, given ε > 0, there exists a trigonometric polynomial P , say
of degree N such that

max
x∈[−π,π]

|f(x)− P (x)| < ε.

In particular, taking squares and integrating this inequality yields∫ π

−π

|f(x)− P (x)|2dx ≤ 2πε2,

and by the best approximation lemma we conclude that∫ π

−π

∣∣∣∣f(x)− N∑
n=1

AnXn(x)

∣∣∣∣2dx ≤
∫ π

−π

|f(x)− P (x)|2dx ≤ 2πε2.

This proves Theorem 4.13 when f is continuous. □

4.5. Completeness and the Gibbs phenomenon. Our purpose here is to prove
the pointwise convergence of the classical full Fourier series. We assume that ℓ = π,
which can easily be arranged through a change of scale.
Thus the Fourier series is

f(x) =
1

2
A0 +

∞∑
n=1

(An cosnx+Bn sinnx) ,

with the coefficients

An =
1

π

∫ π

−π

f(y) cosnydy, for n ≥ 0,

Bn =
1

π

∫ π

−π

f(y) sinnydy, for n ≥ 1.
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The Nth partial sum of the series is

SN (x) =
1

2
A0 +

N∑
n=1

(An cosnx+Bn sinnx) .

We want to prove that SN (x) converges to f(x) as N → ∞. Pointwise convergence
means that x is kept fixed as we take the limit.
Using the fact that cos a cos b+ sin a sin b = cos(a− b), the partial sum SN (x) can
be rewritten as

SN (x) =
1

2π

∫ π

−π

KN (x− y)f(y)dy,

where

KN (θ) = 1 + 2

N∑
n=1

cosnθ.

Now we study the property of this function KN , called the Dirichlet kernel. Note
that KN (θ) has period 2π and that

1

2π

∫ π

−π

KN (θ)dθ =
1

2π

∫ π

−π

1dθ +
1

2π

N∑
n=1

∫ π

−π

cosnθdθ = 1.

Moreover, we have the following remarkable fact.

Lemma 4.18. For all N ∈ N+, we have

KN (θ) =
sin
(
N + 1

2

)
θ

sin θ
2

. (4.14)

Proof. Using the fact that cosnθ = 1
2

(
einθ + e−inθ

)
, we have

KN (θ) = 1 +

N∑
n=1

(
einθ + e−inθ

)
=

N∑
n=−N

einθ.

In actually, this is a finite geometric series with the first term e−iNθ, the radio eiθ
and the last term eiNθ. Therefore, we have

KN (θ) =
e−iNθ − ei(N+1)θ

1− eiθ

=
e−i(N+ 1

2 )θ − ei(N+ 1
2 )θ

e
iθ
2 − e−

iθ
2

=
sin(N + 1

2 )θ

sin θ
2

.

□

4.5.1. Proof for C1 functions. By a change of variable, we have

SN (x)− f(x) =
1

2π

∫ π

−π

KN (θ) (f(x+ θ)− f(x)) dθ

=
1

2π

∫ π

−π

g(θ) sin

((
N +

1

2

)
θ

)
dθ,

where
g(θ) =

f(x+ θ)− f(x)

sin 1
2θ

, for θ ∈ [−π, π].

By an elementary computation, we see that
{
sin
((
N + 1

2

)
θ
)}

N∈N+ form an or-
thogonal set on the interval (−π, π) and∥∥∥∥sin((N +

1

2

)
θ

)∥∥∥∥2 = π, for all N ∈ N+.
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On the other hand, using L’Hôpital’s rule, we have

lim
θ→0

g(θ) = lim
θ→0

(
f(x+ θ)− f(x)

θ
· θ

sin θ
2

)
= 2f ′(x).

Therefore, g(θ) is everywhere continuous, so that the integral ‖g‖ is finite. Com-
bining the above identity and inequality with the Bessel’s inequality, we have

∞∑
n=1

∣∣∣∣(g(θ), sin((N +
1

2

)
θ

))∣∣∣∣2 <∞ ⇒ lim
N→∞

∣∣∣∣(g(θ), sin((N +
1

2

)
θ

))∣∣∣∣ = 0,

which means that
lim

N→∞
|SN (x)− f(x)| = 0, for all x ∈ [−π, π].

This completes the proof of pointwise convergence of the Fourier series of any C1

function.

4.5.2. Proof for discontinuous functions. If the periodic function f(x) itself is
only piecewise continuous and f ′(x) is also piecewise continuous on (a, b), we want
to prove that the Fourier series converges and that its sum is 1

2 [f(x+) + f(x−)].
This means that we assume that f(x) and f ′(x) are continuous except at a finite
number of points, and at those points they have jump discontinuities.
The strategy of the proof is similar to before. Note that

SN (x)− 1

2
(f(x+) + f(x−))

=
1

2π

∫ π

0

KN (θ) (f(x+ θ)− f(x+)) dθ +
1

2π

∫ 0

−π

KN (θ) (f(x+ θ)− f(x−)) dθ

=
1

2π

∫ π

0

g+(θ) sin

((
N +

1

2

)
θ

)
dθ +

1

2π

∫ 0

−π

g−(θ) sin

((
N +

1

2

)
θ

)
dθ,

where

g+(θ) =
f(x+ θ)− f(x+)

sin 1
2θ

and g−(θ) =
f(x+ θ)− f(x−)

sin 1
2θ

.

Note that, from the Bessel’s inequality, and f and f ′ are piesewise continuous, we
have ∑

±
‖g+‖2 <∞ ⇒ lim

N→∞

∑
±

∣∣∣∣(g±, sin((N +
1

2

)
θ

))∣∣∣∣ = 0,

which means that SN (x) converges to 1
2 (f(x+) + f(x−)).

4.5.3. Proof of uniform convergence. Now we prove Theorem 4.12. The idea
is to show that the coefficients go to zero pretty fast by integration by parts. More
precisely, let An and Bn be the Fourier coefficients of f(x) and let A′

n and B′
n

denote the Fourier coefficients of f ′(x). By integration by parts, we have

An =
1

π

∫ π

−π

f(x) cosnxdx

=
1

nπ
f(x) sinnx

∣∣∣∣π
−π

− 1

nπ

∫ π

−π

f ′(x) sinnxdx = − 1

n
B′

n, for n 6= 0.

Similarly, we also have

Bn =
1

π

∫ π

−π

f(x) sinnxdx

=
1

nπ
f(x) cosnx

∣∣∣∣π
−π

+
1

nπ

∫ π

−π

f ′(x) cosnxdx =
1

n
A′

n, for n 6= 0.



50 XU YUAN

On the other hand, from the Bessel’s inequality, we know that

‖f ′‖2 <∞ ⇒
∞∑

n=1

(
|A′

n|2 + |B′
n|2
)
<∞.

Therefore, using the Cauchy-Schwarz inequality, we have
∞∑

n=1

(|An|+ |Bn|) ≤
∞∑

n=1

1

n
(|A′

n|+ |B′
n|)

≤

( ∞∑
n=1

1

n2

) 1
2
( ∞∑

n=1

(
|A′

n|2 + |B′
n|2
)) 1

2

<∞.

Based on the above inequality, we see that the Fourier series converges absolutely.
Moreover, we have

max
x∈[−π,π]

|SN (x)− f(x)| ≤ max
x∈[−π,π]

∞∑
n=N+1

|An cosnx+Bn sinnx|

≤
∞∑

n=N+1

(|An|+ |Bn|) → 0, as N → ∞,

which means that the Fourier series converges uniformly to f(x).

4.5.4. The Gibbs phenomenon. The Gibbs phenomenon is what happens to
Fourier series at jump discontinuities. More precisely, the Gibbs phenomenon states
that near a jump discontinuity, the Fourier series of a function overshoots (or un-
dershoots) it by approximately 9% of the jump.
We now verify the Gibbs phenomenon for an example. Consider the following odd
function,

f(x) =


1

2
for 0 < x < π,

−1

2
for − π < x < 0.

By an elementary computation, the function f has the following Fourier series
∞∑

n=1

2

(2n− 1)π
sin((2n− 1)π).

Recall that, the partial sum SN (x) is given by

SN (x) =
1

2π

∫ π

−π

KN (x− y)f(y)dy

=
1

4π

∫ π

0

sin
(
(N + 1

2 )(x− y)
)

sin 1
2 (x− y)

dy − 1

4π

∫ 0

−π

sin
(
(N + 1

2 )(x− y)
)

sin 1
2 (x− y)

dy.

Let M = N + 1
2 . Consider the change of variable θ =M(x− y) in the first integral

and the change of variable θ =M(y − x) in the second integral,

SN (x) =
1

2π

∫ Mx

M(x−π)

sin θ

2M sin(θ/2M)
dθ − 1

2π

∫ −Mx

−M(x+π)

sin θ

2M sin(θ/2M)
dθ

=
1

2π

∫ Mx

−Mx

sin θ

2M sin(θ/2M)
dθ − 1

2π

∫ M(π+x)

M(π−x)

sin θ

2M sin(θ/2M)
dθ.

Let x = π
M in the above identity, we get

SN

( π
M

)
=

1

2π

∫ π

−π

sin θ

2M sin(θ/2M)
dθ − 1

2π

∫ (M+1)π

(M−1)π

sin θ

2M sin(θ/2M)
dθ.
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On the one hand, we have

2M sin
θ

2M
→ θ uniformly in θ ∈ [−π, π]

⇒ 1

2π

∫ π

−π

sin θ

2M sin(θ/2M)
dθ → 1

2π

∫ π

−π

sin θ

θ
dθ, as M → ∞.

On the other hand, we have
θ

2M
∈
[
π

4
,
3π

4

]
, for all x ∈ [(M − 1)π, (M + 1)π]

⇒

∣∣∣∣∣ 12π
∫ (M+1)π

(M−1)π

sin θ

2M sin(θ/2M)
dθ

∣∣∣∣∣ ≤ 1√
2M

→ 0 as M → ∞.

Combining the above two estimates, we have

lim
M→∞

SN

( π
M

)
=

1

2π

∫ π

−π

sin θ

θ
dθ ' 0.59,

which implies ∣∣∣SN

( π
M

)
− f(x)

∣∣∣ = ∣∣∣∣SN

( π
M

)
− 1

2

∣∣∣∣ = 0.09.

4.6. Inhomogeneous Boundary conditions. In this subsection, we consider
problems with sources given at the boundary.

4.6.1. 1D heat equation. Consider the 1D heat equation with sources at both
endpoints

∂tu = ∂2xu, for (t, x) ∈ (0,∞)× (0, π),

(u(t, 0), u(t, π), u(0, x)) = (h(t), j(t), 0).
(4.15)

For each t ∈ (0,∞), we certainly can expand

u(t, x) =

∞∑
n=1

un(t) sinnx.

The coefficients are necessarily given by

un(t) =
2

π

∫ π

0

u(t, x) sinnxdx.

Form the initial data u(0, x) = 0 for all x ∈ [0, π], we know that un(0) = 0 for all
n ∈ N+. For the term ∂tu, we also expand it by Fourier series,

∂u

∂t
=

∞∑
n=1

vn(t) sinnx with vn(t) =
2

π

∫ π

0

∂u

∂t
sinnxdx =

dun
dt

.

For the term ∂2xu, we also expand it by Fourier series,

∂2u

∂x2
=

∞∑
n=1

wn(t) sinnx with wn(t) =
2

π

∫ π

0

∂2u

∂x2
sinnxdx.

Moreover, by integration by parts, we have

wn(t) = −2n2

π

∫ π

0

u(t, x) sinnxdx− 2n

π
u(t, x) cosnx|π0

= −n2un(t, x) +
2n

π

[
(−1)n+1j(t) + h(t)

]
.

Moreover, using the fact that ∂tu = ∂2xu, we have

vn(t) = wn(t) ⇒
dun
dt

= −n2un(t, x) +
2n

π

[
(−1)n+1j(t) + h(t)

]
.
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Based on the above identity and un(0) = 0, we have

un(t) =
2n

π

∫ t

0

e−n2(t−s)
[
(−1)n+1j(s) + h(s)

]
ds, for n ∈ N+.

4.6.2. 1D wave equation. Consider the following 1D inhomogeneous wave equa-
tion

∂2t u(t, x)− ∂2xu(t, x) = f(t, x),

u(t, 0) = h(t) and u(t, π) = k(t),

u(0, x) = ϕ(x) and ∂tu(0, x) = ψ(x).

Again we expand everything in the eigenfunctions of the corresponding homoge-
neous problem:

u(t, x) =

∞∑
n=1

un(t) sinnx,

∂2t u(t, x) with coefficients vn(t), ∂2xu(t, x) with wn(t), f(t, x) with coefficients fn(t),
ϕ(x) with coefficients ϕn and ψ(x) with coefficients ψn. Then, from the definition
of Fourier coefficients, we have

vn(t) =
2

π

∫ π

0

∂2u

∂t2
sinnxdx =

d2un
dt2

,

and just as before,

wn(t) =
2

π

∫ π

0

∂2u

∂x2
sinnxdx

= −n2un(t) +
2n

π

(
h(t) + (−1)n+1k(t)

)
.

From the PDE ∂2t u− ∂2xu = f , we have

vn(t)− wn(t) =
2

π

∫ π

0

(∂2t u− ∂2xu) sinnxdx = fn(t).

Based on the above identity, we have the following second-order ODE
d2un
dt2

+ n2un =
2n

π

(
h(t) + (−1)n+1k(t)

)
+ fn(t),

with the initial conditions
un(0) = ϕn and ∂tun(0) = ψn.

The solution can be given by

un(t) = ϕn cosnt+
1

n
ψn sinnt

+
1

n

∫ t

0

sin(n(t− s))

(
2n

π

(
h(s) + (−1)n+1k(s)

)
+ fn(s)

)
ds.
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